Filtros : "ANÉIS DE GRUPOS" "GONCALVES, JAIRO ZACARIAS" "IME" Removidos: "Indexado no Biological Abstracts" "BARROSO, LUCIA PEREIRA" "FINEP 1266/130" "Stochastic Processes and their Applications" Limpar

Filtros



Refine with date range


  • Source: Algebras and Representation Theory. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira e GONÇALVES, Jairo Zacarias e SÁNCHEZ, Javier. Free symmetric and unitary pairs in the field of fractions of torsion-free nilpotent group algebras. Algebras and Representation Theory, v. 23, p. 605-619, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10468-019-09866-8. Acesso em: 17 nov. 2024.
    • APA

      Ferreira, V. de O., Gonçalves, J. Z., & Sánchez, J. (2020). Free symmetric and unitary pairs in the field of fractions of torsion-free nilpotent group algebras. Algebras and Representation Theory, 23, 605-619. doi:10.1007/s10468-019-09866-8
    • NLM

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric and unitary pairs in the field of fractions of torsion-free nilpotent group algebras [Internet]. Algebras and Representation Theory. 2020 ; 23 605-619.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s10468-019-09866-8
    • Vancouver

      Ferreira V de O, Gonçalves JZ, Sánchez J. Free symmetric and unitary pairs in the field of fractions of torsion-free nilpotent group algebras [Internet]. Algebras and Representation Theory. 2020 ; 23 605-619.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s10468-019-09866-8
  • Source: Archiv der Mathematik. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROCHE, Osnel e GONÇALVES, Jairo Zacarias e DEL RIO, Angel. Group algebras whose units satisfy a Laurent polynomial identity. Archiv der Mathematik, v. 111, n. 4, p. 353–367, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00013-018-1223-8. Acesso em: 17 nov. 2024.
    • APA

      Broche, O., Gonçalves, J. Z., & Del rio, A. (2018). Group algebras whose units satisfy a Laurent polynomial identity. Archiv der Mathematik, 111( 4), 353–367. doi:10.1007/s00013-018-1223-8
    • NLM

      Broche O, Gonçalves JZ, Del rio A. Group algebras whose units satisfy a Laurent polynomial identity [Internet]. Archiv der Mathematik. 2018 ; 111( 4): 353–367.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s00013-018-1223-8
    • Vancouver

      Broche O, Gonçalves JZ, Del rio A. Group algebras whose units satisfy a Laurent polynomial identity [Internet]. Archiv der Mathematik. 2018 ; 111( 4): 353–367.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s00013-018-1223-8
  • Source: Proceedings. Conference titles: Groups, rings, group rings, and Hopf algebras : International Conference in honor of Donald S. Passman's 75th birthday. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, ANÉIS COM DIVISÃO, GRUPOS NILPOTENTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias. Free unit groups in group rings and division rings: my collaboration with Don Passman. 2017, Anais.. Providence: AMS, 2017. Disponível em: https://doi.org/10.1090/conm/688/13828. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z. (2017). Free unit groups in group rings and division rings: my collaboration with Don Passman. In Proceedings. Providence: AMS. doi:10.1090/conm/688/13828
    • NLM

      Gonçalves JZ. Free unit groups in group rings and division rings: my collaboration with Don Passman [Internet]. Proceedings. 2017 ;[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/conm/688/13828
    • Vancouver

      Gonçalves JZ. Free unit groups in group rings and division rings: my collaboration with Don Passman [Internet]. Proceedings. 2017 ;[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/conm/688/13828
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, GRUPOS NILPOTENTES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Involutions and free pairs of bicyclic units in integral group rings of non-nilpotent groups. Proceedings of the American Mathematical Society, v. 143, n. 6, p. 2395-2401, 2015Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2015-12550-6. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2015). Involutions and free pairs of bicyclic units in integral group rings of non-nilpotent groups. Proceedings of the American Mathematical Society, 143( 6), 2395-2401. doi:10.1090/S0002-9939-2015-12550-6
    • NLM

      Gonçalves JZ, Passman DS. Involutions and free pairs of bicyclic units in integral group rings of non-nilpotent groups [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143( 6): 2395-2401.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/S0002-9939-2015-12550-6
    • Vancouver

      Gonçalves JZ, Passman DS. Involutions and free pairs of bicyclic units in integral group rings of non-nilpotent groups [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143( 6): 2395-2401.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/S0002-9939-2015-12550-6
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS, GRUPOS SUPERSOLÚVEIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e LICHTMAN, Alexander I. Free subgroups in division rings generated by group rings of soluble groups. International Journal of Algebra and Computation, v. 24, n. 8, p. 1127-1140, 2014Tradução . . Disponível em: https://doi.org/10.1142/S0218196714500490. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Lichtman, A. I. (2014). Free subgroups in division rings generated by group rings of soluble groups. International Journal of Algebra and Computation, 24( 8), 1127-1140. doi:10.1142/S0218196714500490
    • NLM

      Gonçalves JZ, Lichtman AI. Free subgroups in division rings generated by group rings of soluble groups [Internet]. International Journal of Algebra and Computation. 2014 ; 24( 8): 1127-1140.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196714500490
    • Vancouver

      Gonçalves JZ, Lichtman AI. Free subgroups in division rings generated by group rings of soluble groups [Internet]. International Journal of Algebra and Computation. 2014 ; 24( 8): 1127-1140.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0218196714500490
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, GRUPOS SIMPLES, GRUPOS FINITOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e GURALNICK, Robert M e DEL RIO, Angel. Bass units as free factors in integral group rings of simple groups. Journal of Algebra, v. 404, p. 100-123, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2013.12.024. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., Guralnick, R. M., & del Rio, A. (2014). Bass units as free factors in integral group rings of simple groups. Journal of Algebra, 404, 100-123. doi:10.1016/j.jalgebra.2013.12.024
    • NLM

      Gonçalves JZ, Guralnick RM, del Rio A. Bass units as free factors in integral group rings of simple groups [Internet]. Journal of Algebra. 2014 ; 404 100-123.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.12.024
    • Vancouver

      Gonçalves JZ, Guralnick RM, del Rio A. Bass units as free factors in integral group rings of simple groups [Internet]. Journal of Algebra. 2014 ; 404 100-123.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2013.12.024
  • Source: Journal of Algebra and Its Applications. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e DEL RÍO, Ángel. A survey on free subgroups in the group of units of group rings. Journal of Algebra and Its Applications, v. 12, n. 6, 2013Tradução . . Disponível em: https://doi.org/10.1142/S0219498813500047. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Del Río, Á. (2013). A survey on free subgroups in the group of units of group rings. Journal of Algebra and Its Applications, 12( 6). doi:10.1142/S0219498813500047
    • NLM

      Gonçalves JZ, Del Río Á. A survey on free subgroups in the group of units of group rings [Internet]. Journal of Algebra and Its Applications. 2013 ; 12( 6):[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0219498813500047
    • Vancouver

      Gonçalves JZ, Del Río Á. A survey on free subgroups in the group of units of group rings [Internet]. Journal of Algebra and Its Applications. 2013 ; 12( 6):[citado 2024 nov. 17 ] Available from: https://doi.org/10.1142/S0219498813500047
  • Source: Proceedings of the Edinburgh Mathematical Society. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e VELOSO, Paula M. Alternating units as free factors in the group of units of integral group rings. Proceedings of the Edinburgh Mathematical Society, v. 54, n. 3, p. 695-709, 2011Tradução . . Disponível em: https://doi.org/10.1017/S0013091510000428. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Veloso, P. M. (2011). Alternating units as free factors in the group of units of integral group rings. Proceedings of the Edinburgh Mathematical Society, 54( 3), 695-709. doi:10.1017/S0013091510000428
    • NLM

      Gonçalves JZ, Veloso PM. Alternating units as free factors in the group of units of integral group rings [Internet]. Proceedings of the Edinburgh Mathematical Society. 2011 ; 54( 3): 695-709.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1017/S0013091510000428
    • Vancouver

      Gonçalves JZ, Veloso PM. Alternating units as free factors in the group of units of integral group rings [Internet]. Proceedings of the Edinburgh Mathematical Society. 2011 ; 54( 3): 695-709.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1017/S0013091510000428
  • Source: Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. Conference titles: International Conference Groups, Rings and Group Rings. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, REPRESENTAÇÕES DE GRUPOS FINITOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e VELOSO, Paula Murgel. Special units, unipotent units and free groups in group algebras. 2009, Anais.. Providence: AMS, 2009. Disponível em: http://www.ams.org/books/conm/499/. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Veloso, P. M. (2009). Special units, unipotent units and free groups in group algebras. In Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. Providence: AMS. Recuperado de http://www.ams.org/books/conm/499/
    • NLM

      Gonçalves JZ, Veloso PM. Special units, unipotent units and free groups in group algebras [Internet]. Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. 2009 ;[citado 2024 nov. 17 ] Available from: http://www.ams.org/books/conm/499/
    • Vancouver

      Gonçalves JZ, Veloso PM. Special units, unipotent units and free groups in group algebras [Internet]. Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. 2009 ;[citado 2024 nov. 17 ] Available from: http://www.ams.org/books/conm/499/
  • Source: Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. Conference titles: International Conference Groups, Rings and Group Rings. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, REPRESENTAÇÕES DE GRUPOS FINITOS, ANÉIS COM DIVISÃO

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e SHIRVANI, Mazi. Algebraic elements as free factors in simple Artinian rings. 2009, Anais.. Providence: AMS, 2009. Disponível em: http://www.ams.org/books/conm/499/. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Shirvani, M. (2009). Algebraic elements as free factors in simple Artinian rings. In Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. Providence: AMS. Recuperado de http://www.ams.org/books/conm/499/
    • NLM

      Gonçalves JZ, Shirvani M. Algebraic elements as free factors in simple Artinian rings [Internet]. Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. 2009 ;[citado 2024 nov. 17 ] Available from: http://www.ams.org/books/conm/499/
    • Vancouver

      Gonçalves JZ, Shirvani M. Algebraic elements as free factors in simple Artinian rings [Internet]. Groups, rings, and group rings : International Conference : Groups, Rings, and Group Rings. 2009 ;[citado 2024 nov. 17 ] Available from: http://www.ams.org/books/conm/499/
  • Source: Journal of Group Theory. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e DEL RIO, Angel. Bicyclic units, Bass cyclic units and free groups. Journal of Group Theory, v. 11, n. 2, p. 247-265, 2008Tradução . . Disponível em: https://doi.org/10.1515/jgt.2008.014. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Del Rio, A. (2008). Bicyclic units, Bass cyclic units and free groups. Journal of Group Theory, 11( 2), 247-265. doi:10.1515/jgt.2008.014
    • NLM

      Gonçalves JZ, Del Rio A. Bicyclic units, Bass cyclic units and free groups [Internet]. Journal of Group Theory. 2008 ; 11( 2): 247-265.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1515/jgt.2008.014
    • Vancouver

      Gonçalves JZ, Del Rio A. Bicyclic units, Bass cyclic units and free groups [Internet]. Journal of Group Theory. 2008 ; 11( 2): 247-265.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1515/jgt.2008.014
  • Source: Programme and Abstracts. Conference titles: Madrid ICM2006 Satellite Conference - Nocommutative Algebra. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e RIO, Angel del. Powers of byciclic and Bass cyclic units generating free groups. 2006, Anais.. Granada: Instituto de Matemática e Estatística, Universidade de São Paulo, 2006. . Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Rio, A. del. (2006). Powers of byciclic and Bass cyclic units generating free groups. In Programme and Abstracts. Granada: Instituto de Matemática e Estatística, Universidade de São Paulo.
    • NLM

      Gonçalves JZ, Rio A del. Powers of byciclic and Bass cyclic units generating free groups. Programme and Abstracts. 2006 ;[citado 2024 nov. 17 ]
    • Vancouver

      Gonçalves JZ, Rio A del. Powers of byciclic and Bass cyclic units generating free groups. Programme and Abstracts. 2006 ;[citado 2024 nov. 17 ]
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Linear groups and group rings. Journal of Algebra, v. 295, n. 1, p. 94-118, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2005.02.009. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2006). Linear groups and group rings. Journal of Algebra, 295( 1), 94-118. doi:10.1016/j.jalgebra.2005.02.009
    • NLM

      Gonçalves JZ, Passman DS. Linear groups and group rings [Internet]. Journal of Algebra. 2006 ; 295( 1): 94-118.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2005.02.009
    • Vancouver

      Gonçalves JZ, Passman DS. Linear groups and group rings [Internet]. Journal of Algebra. 2006 ; 295( 1): 94-118.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jalgebra.2005.02.009
  • Source: Groups, rings and algebras. Conference titles: Groups, rings and algebras : a conference in honor of Donald S. Passman. Unidade: IME

    Subjects: ANÉIS COM DIVISÃO, ANÉIS DE GRUPOS

    PrivadoHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e SHIRVANI, M. Free symmetric and unitary pairs in central simple algebras with involution. 2006, Anais.. Providence: American Mathematical Society, 2006. Disponível em: https://repositorio.usp.br/directbitstream/cfdbab36-45d8-4435-ab1f-34a3fdbb8690/3194651.pdf. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Shirvani, M. (2006). Free symmetric and unitary pairs in central simple algebras with involution. In Groups, rings and algebras. Providence: American Mathematical Society. Recuperado de https://repositorio.usp.br/directbitstream/cfdbab36-45d8-4435-ab1f-34a3fdbb8690/3194651.pdf
    • NLM

      Gonçalves JZ, Shirvani M. Free symmetric and unitary pairs in central simple algebras with involution [Internet]. Groups, rings and algebras. 2006 ;[citado 2024 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/cfdbab36-45d8-4435-ab1f-34a3fdbb8690/3194651.pdf
    • Vancouver

      Gonçalves JZ, Shirvani M. Free symmetric and unitary pairs in central simple algebras with involution [Internet]. Groups, rings and algebras. 2006 ;[citado 2024 nov. 17 ] Available from: https://repositorio.usp.br/directbitstream/cfdbab36-45d8-4435-ab1f-34a3fdbb8690/3194651.pdf
  • Source: Archiv der Mathematik. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Embedding free products in the unit group of an integral group ring. Archiv der Mathematik, v. 82, n. 2, p. 97-102, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00013-003-4793-y. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2004). Embedding free products in the unit group of an integral group ring. Archiv der Mathematik, 82( 2), 97-102. doi:10.1007/s00013-003-4793-y
    • NLM

      Gonçalves JZ, Passman DS. Embedding free products in the unit group of an integral group ring [Internet]. Archiv der Mathematik. 2004 ; 82( 2): 97-102.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s00013-003-4793-y
    • Vancouver

      Gonçalves JZ, Passman DS. Embedding free products in the unit group of an integral group ring [Internet]. Archiv der Mathematik. 2004 ; 82( 2): 97-102.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s00013-003-4793-y
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Free unit groups in algebras. Communications in Algebra, v. 31, n. 5, p. 2219-2227, 2003Tradução . . Disponível em: https://doi.org/10.1081/AGB-120018993. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (2003). Free unit groups in algebras. Communications in Algebra, 31( 5), 2219-2227. doi:10.1081/AGB-120018993
    • NLM

      Gonçalves JZ, Passman DS. Free unit groups in algebras [Internet]. Communications in Algebra. 2003 ; 31( 5): 2219-2227.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1081/AGB-120018993
    • Vancouver

      Gonçalves JZ, Passman DS. Free unit groups in algebras [Internet]. Communications in Algebra. 2003 ; 31( 5): 2219-2227.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1081/AGB-120018993
  • Source: Journal of London Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA, ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHIRVANI, Mazi e GONÇALVES, Jairo Zacarias. Large free algebras in the ring of fractions of skew polynomial rings. Journal of London Mathematical Society, v. 60, n. 2, p. 481-489, 1999Tradução . . Disponível em: https://doi.org/10.1112/S0024610799007772. Acesso em: 17 nov. 2024.
    • APA

      Shirvani, M., & Gonçalves, J. Z. (1999). Large free algebras in the ring of fractions of skew polynomial rings. Journal of London Mathematical Society, 60( 2), 481-489. doi:10.1112/S0024610799007772
    • NLM

      Shirvani M, Gonçalves JZ. Large free algebras in the ring of fractions of skew polynomial rings [Internet]. Journal of London Mathematical Society. 1999 ; 60( 2): 481-489.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1112/S0024610799007772
    • Vancouver

      Shirvani M, Gonçalves JZ. Large free algebras in the ring of fractions of skew polynomial rings [Internet]. Journal of London Mathematical Society. 1999 ; 60( 2): 481-489.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1112/S0024610799007772
  • Source: Glasgow Mathematical Journal. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e GONÇALVES, Jairo Zacarias. Semigroup identities on units of integral group rings. Glasgow Mathematical Journal, v. 39, n. 1, p. 1-6, 1997Tradução . . Disponível em: https://doi.org/10.1017/S0017089500031839. Acesso em: 17 nov. 2024.
    • APA

      Dokuchaev, M., & Gonçalves, J. Z. (1997). Semigroup identities on units of integral group rings. Glasgow Mathematical Journal, 39( 1), 1-6. doi:10.1017/S0017089500031839
    • NLM

      Dokuchaev M, Gonçalves JZ. Semigroup identities on units of integral group rings [Internet]. Glasgow Mathematical Journal. 1997 ; 39( 1): 1-6.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1017/S0017089500031839
    • Vancouver

      Dokuchaev M, Gonçalves JZ. Semigroup identities on units of integral group rings [Internet]. Glasgow Mathematical Journal. 1997 ; 39( 1): 1-6.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1017/S0017089500031839
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, ÁLGEBRAS LIVRES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e SHIRVANI, M. On free group algebras in division rings with uncountable center. Proceedings of the American Mathematical Society, v. 124, n. 3, p. 685-687, 1996Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-96-03032-8. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Shirvani, M. (1996). On free group algebras in division rings with uncountable center. Proceedings of the American Mathematical Society, 124( 3), 685-687. doi:10.1090/S0002-9939-96-03032-8
    • NLM

      Gonçalves JZ, Shirvani M. On free group algebras in division rings with uncountable center [Internet]. Proceedings of the American Mathematical Society. 1996 ; 124( 3): 685-687.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/S0002-9939-96-03032-8
    • Vancouver

      Gonçalves JZ, Shirvani M. On free group algebras in division rings with uncountable center [Internet]. Proceedings of the American Mathematical Society. 1996 ; 124( 3): 685-687.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1090/S0002-9939-96-03032-8
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, GRUPOS LIVRES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias e PASSMAN, Donald S. Construction of free subgroups in the group of units of modular group algebras. Communications in Algebra, v. 24, n. 13, p. 4211-4215, 1996Tradução . . Disponível em: https://doi.org/10.1080/00927879608825808. Acesso em: 17 nov. 2024.
    • APA

      Gonçalves, J. Z., & Passman, D. S. (1996). Construction of free subgroups in the group of units of modular group algebras. Communications in Algebra, 24( 13), 4211-4215. doi:10.1080/00927879608825808
    • NLM

      Gonçalves JZ, Passman DS. Construction of free subgroups in the group of units of modular group algebras [Internet]. Communications in Algebra. 1996 ; 24( 13): 4211-4215.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/00927879608825808
    • Vancouver

      Gonçalves JZ, Passman DS. Construction of free subgroups in the group of units of modular group algebras [Internet]. Communications in Algebra. 1996 ; 24( 13): 4211-4215.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1080/00927879608825808

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024