Source: Lecture Notes in Artificial Intelligence. Conference titles: Brazilian Conference on Intelligent Systems - BRACIS. Unidades: ICMC, FFCLRP
Subjects: ANÁLISE DE REGRESSÃO E DE CORRELAÇÃO, COVID-19, REDES COMPLEXAS, APRENDIZADO COMPUTACIONAL
ABNT
COLLIRI, Tiago Santos e DELBEM, Alexandre Cláudio Botazzo e LIANG, Zhao. Predicting the evolution of COVID-19 cases and deaths through a correlations-based temporal network. Lecture Notes in Artificial Intelligence. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-030-61380-8_27. Acesso em: 01 nov. 2024. , 2020APA
Colliri, T. S., Delbem, A. C. B., & Liang, Z. (2020). Predicting the evolution of COVID-19 cases and deaths through a correlations-based temporal network. Lecture Notes in Artificial Intelligence. Cham: Springer. doi:10.1007/978-3-030-61380-8_27NLM
Colliri TS, Delbem ACB, Liang Z. Predicting the evolution of COVID-19 cases and deaths through a correlations-based temporal network [Internet]. Lecture Notes in Artificial Intelligence. 2020 ; 12320 397-411.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/978-3-030-61380-8_27Vancouver
Colliri TS, Delbem ACB, Liang Z. Predicting the evolution of COVID-19 cases and deaths through a correlations-based temporal network [Internet]. Lecture Notes in Artificial Intelligence. 2020 ; 12320 397-411.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/978-3-030-61380-8_27