Filtros : "ÁLGEBRAS DE LIE" "2014" Removido: "Memorial University of Newfoundland, Canada" Limpar

Filtros



Refine with date range


  • Source: Algebra Colloquium. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ÁLGEBRAS DE LIE SEMISSIMPLES, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e GUERREIRO, Marines. Simple classical Lie algebras in characteristic 2 and their gradations, II. Algebra Colloquium, v. 21, n. 2, p. 207-214, 2014Tradução . . Disponível em: https://doi.org/10.1142/S1005386714000169. Acesso em: 02 nov. 2024.
    • APA

      Grichkov, A., & Guerreiro, M. (2014). Simple classical Lie algebras in characteristic 2 and their gradations, II. Algebra Colloquium, 21( 2), 207-214. doi:10.1142/S1005386714000169
    • NLM

      Grichkov A, Guerreiro M. Simple classical Lie algebras in characteristic 2 and their gradations, II [Internet]. Algebra Colloquium. 2014 ; 21( 2): 207-214.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1142/S1005386714000169
    • Vancouver

      Grichkov A, Guerreiro M. Simple classical Lie algebras in characteristic 2 and their gradations, II [Internet]. Algebra Colloquium. 2014 ; 21( 2): 207-214.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1142/S1005386714000169
  • Source: Transactions of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly e FUTORNY, Vyacheslav. Representations of the Lie algebra of vector fields on a torus and the chiral de Rham complex. Transactions of the American Mathematical Society, v. 366, n. 9, p. 4697-4731, 2014Tradução . . Disponível em: https://doi.org/10.1090/S0002-9947-2014-05959-X. Acesso em: 02 nov. 2024.
    • APA

      Billig, Y., & Futorny, V. (2014). Representations of the Lie algebra of vector fields on a torus and the chiral de Rham complex. Transactions of the American Mathematical Society, 366( 9), 4697-4731. doi:10.1090/S0002-9947-2014-05959-X
    • NLM

      Billig Y, Futorny V. Representations of the Lie algebra of vector fields on a torus and the chiral de Rham complex [Internet]. Transactions of the American Mathematical Society. 2014 ; 366( 9): 4697-4731.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/S0002-9947-2014-05959-X
    • Vancouver

      Billig Y, Futorny V. Representations of the Lie algebra of vector fields on a torus and the chiral de Rham complex [Internet]. Transactions of the American Mathematical Society. 2014 ; 366( 9): 4697-4731.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/S0002-9947-2014-05959-X
  • Source: Indagationes Mathematicae. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GRUPOS DE LIE, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JOTZ LEAN, Madeleine e ORTIZ, Cristian. Foliated groupoids and infinitesimal ideal systems. Indagationes Mathematicae, v. 25, n. 5, p. 1019-1053, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.indag.2014.07.009. Acesso em: 02 nov. 2024.
    • APA

      Jotz Lean, M., & Ortiz, C. (2014). Foliated groupoids and infinitesimal ideal systems. Indagationes Mathematicae, 25( 5), 1019-1053. doi:10.1016/j.indag.2014.07.009
    • NLM

      Jotz Lean M, Ortiz C. Foliated groupoids and infinitesimal ideal systems [Internet]. Indagationes Mathematicae. 2014 ; 25( 5): 1019-1053.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.indag.2014.07.009
    • Vancouver

      Jotz Lean M, Ortiz C. Foliated groupoids and infinitesimal ideal systems [Internet]. Indagationes Mathematicae. 2014 ; 25( 5): 1019-1053.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.indag.2014.07.009
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IUSENKO, Kostiantyn e WILSON, Evan Andrew. Some remarks on Hall algebra of bound quiver. São Paulo Journal of Mathematical Sciences, v. 8, n. 1, p. 83-94, 2014Tradução . . Disponível em: http://www.ime.usp.br/~spjm/articlepdf/496.pdf. Acesso em: 02 nov. 2024.
    • APA

      Iusenko, K., & Wilson, E. A. (2014). Some remarks on Hall algebra of bound quiver. São Paulo Journal of Mathematical Sciences, 8( 1), 83-94. Recuperado de http://www.ime.usp.br/~spjm/articlepdf/496.pdf
    • NLM

      Iusenko K, Wilson EA. Some remarks on Hall algebra of bound quiver [Internet]. São Paulo Journal of Mathematical Sciences. 2014 ; 8( 1): 83-94.[citado 2024 nov. 02 ] Available from: http://www.ime.usp.br/~spjm/articlepdf/496.pdf
    • Vancouver

      Iusenko K, Wilson EA. Some remarks on Hall algebra of bound quiver [Internet]. São Paulo Journal of Mathematical Sciences. 2014 ; 8( 1): 83-94.[citado 2024 nov. 02 ] Available from: http://www.ime.usp.br/~spjm/articlepdf/496.pdf
  • Source: Recent advances in representation theory, quantum groups, algebraic geometry, and related topics: AMS special sessions on geometric and algebraic aspects of representation theory and quantum groups, and noncommutative algebraic geometry, October 13-14, 2012, Tulane University, New Orleans, Louisiana. Conference titles: AMS Special Sessions on Geometric and Algebraic Aspects of Representation Theory and Quantum Groups and Noncommutative Algebraic Geometry. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMÍREZ, Luis Enrique. On the classification of irreducible Gelfand-Tsetlin modules of sl(3). 2014, Anais.. Providence: AMS, 2014. . Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2014). On the classification of irreducible Gelfand-Tsetlin modules of sl(3). In Recent advances in representation theory, quantum groups, algebraic geometry, and related topics: AMS special sessions on geometric and algebraic aspects of representation theory and quantum groups, and noncommutative algebraic geometry, October 13-14, 2012, Tulane University, New Orleans, Louisiana. Providence: AMS.
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. On the classification of irreducible Gelfand-Tsetlin modules of sl(3). Recent advances in representation theory, quantum groups, algebraic geometry, and related topics: AMS special sessions on geometric and algebraic aspects of representation theory and quantum groups, and noncommutative algebraic geometry, October 13-14, 2012, Tulane University, New Orleans, Louisiana. 2014 ;[citado 2024 nov. 02 ]
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. On the classification of irreducible Gelfand-Tsetlin modules of sl(3). Recent advances in representation theory, quantum groups, algebraic geometry, and related topics: AMS special sessions on geometric and algebraic aspects of representation theory and quantum groups, and noncommutative algebraic geometry, October 13-14, 2012, Tulane University, New Orleans, Louisiana. 2014 ;[citado 2024 nov. 02 ]
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIKHALEV, Alexander A. e SHESTAKOV, Ivan P. PBW-pairs of varieties of linear algebras. Communications in Algebra, v. 42, n. 2, p. 667-687, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2012.720867. Acesso em: 02 nov. 2024.
    • APA

      Mikhalev, A. A., & Shestakov, I. P. (2014). PBW-pairs of varieties of linear algebras. Communications in Algebra, 42( 2), 667-687. doi:10.1080/00927872.2012.720867
    • NLM

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2012.720867
    • Vancouver

      Mikhalev AA, Shestakov IP. PBW-pairs of varieties of linear algebras [Internet]. Communications in Algebra. 2014 ; 42( 2): 667-687.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2012.720867
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: SUPERÁLGEBRAS DE LIE, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUZZO JÚNIOR, Henrique e HERNÁNDEZ, I e SÁNCHEZ-VALENZUELA, O. A. Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving su(2,2). Journal of Mathematical Physics, v. 55, n. 9, 2014Tradução . . Disponível em: https://doi.org/10.1063/1.4895917. Acesso em: 02 nov. 2024.
    • APA

      Guzzo Júnior, H., Hernández, I., & Sánchez-Valenzuela, O. A. (2014). Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving su(2,2). Journal of Mathematical Physics, 55( 9). doi:10.1063/1.4895917
    • NLM

      Guzzo Júnior H, Hernández I, Sánchez-Valenzuela OA. Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving su(2,2) [Internet]. Journal of Mathematical Physics. 2014 ; 55( 9):[citado 2024 nov. 02 ] Available from: https://doi.org/10.1063/1.4895917
    • Vancouver

      Guzzo Júnior H, Hernández I, Sánchez-Valenzuela OA. Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving su(2,2) [Internet]. Journal of Mathematical Physics. 2014 ; 55( 9):[citado 2024 nov. 02 ] Available from: https://doi.org/10.1063/1.4895917
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e MAZORCHUK, Volodymyr. Weight modules over infinite dimensional Weyl algebras. Proceedings of the American Mathematical Society, v. 142, n. 9, p. 3049-3057, 2014Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2014-12071-5. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., Grantcharov, D., & Mazorchuk, V. (2014). Weight modules over infinite dimensional Weyl algebras. Proceedings of the American Mathematical Society, 142( 9), 3049-3057. doi:10.1090/S0002-9939-2014-12071-5
    • NLM

      Futorny V, Grantcharov D, Mazorchuk V. Weight modules over infinite dimensional Weyl algebras [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 9): 3049-3057.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12071-5
    • Vancouver

      Futorny V, Grantcharov D, Mazorchuk V. Weight modules over infinite dimensional Weyl algebras [Internet]. Proceedings of the American Mathematical Society. 2014 ; 142( 9): 3049-3057.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1090/S0002-9939-2014-12071-5
  • Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAUJO, Wiliam Francisco de. As álgebras de Lie simples de dimensão 7 sobre um corpo de característica 2 e suas sunálgebras toroidais. 2014. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2014. Disponível em: https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-112904/. Acesso em: 02 nov. 2024.
    • APA

      Araujo, W. F. de. (2014). As álgebras de Lie simples de dimensão 7 sobre um corpo de característica 2 e suas sunálgebras toroidais (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-112904/
    • NLM

      Araujo WF de. As álgebras de Lie simples de dimensão 7 sobre um corpo de característica 2 e suas sunálgebras toroidais [Internet]. 2014 ;[citado 2024 nov. 02 ] Available from: https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-112904/
    • Vancouver

      Araujo WF de. As álgebras de Lie simples de dimensão 7 sobre um corpo de característica 2 e suas sunálgebras toroidais [Internet]. 2014 ;[citado 2024 nov. 02 ] Available from: https://teses.usp.br/teses/disponiveis/45/45131/tde-20230727-112904/
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GRUPOS QUÂNTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e MARTINS, Renato Alessandro. Free field realizations of induced modules for affine Lie algebras. Communications in Algebra, v. 42, n. 6, p. 2428-2441, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2012.758270. Acesso em: 02 nov. 2024.
    • APA

      Kashuba, I., & Martins, R. A. (2014). Free field realizations of induced modules for affine Lie algebras. Communications in Algebra, 42( 6), 2428-2441. doi:10.1080/00927872.2012.758270
    • NLM

      Kashuba I, Martins RA. Free field realizations of induced modules for affine Lie algebras [Internet]. Communications in Algebra. 2014 ; 42( 6): 2428-2441.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2012.758270
    • Vancouver

      Kashuba I, Martins RA. Free field realizations of induced modules for affine Lie algebras [Internet]. Communications in Algebra. 2014 ; 42( 6): 2428-2441.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2012.758270
  • Source: Quarterly Journal of Mathematics. Unidade: IME

    Subjects: GEOMETRIA ALGÉBRICA, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRESSLER, Paul e FUTORNY, Vyacheslav. Chiral anomaly via vertex algebroids. Quarterly Journal of Mathematics, v. 65, n. 2, p. 581-596, 2014Tradução . . Disponível em: https://doi.org/10.1093/qmath/hat036. Acesso em: 02 nov. 2024.
    • APA

      Bressler, P., & Futorny, V. (2014). Chiral anomaly via vertex algebroids. Quarterly Journal of Mathematics, 65( 2), 581-596. doi:10.1093/qmath/hat036
    • NLM

      Bressler P, Futorny V. Chiral anomaly via vertex algebroids [Internet]. Quarterly Journal of Mathematics. 2014 ; 65( 2): 581-596.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1093/qmath/hat036
    • Vancouver

      Bressler P, Futorny V. Chiral anomaly via vertex algebroids [Internet]. Quarterly Journal of Mathematics. 2014 ; 65( 2): 581-596.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1093/qmath/hat036
  • Source: Developments and retrospectives in Lie theory: algebraic methods. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COX, Ben e FUTORNY, Vyacheslav e MARTINS, Renato Alessandro. Free field realizations of the Date-Jimbo-Kashiwara-Miwa algebra. Developments and retrospectives in Lie theory: algebraic methods. Tradução . Cham: Springer, 2014. . Disponível em: https://doi.org/10.1007/978-3-319-09804-3_5. Acesso em: 02 nov. 2024.
    • APA

      Cox, B., Futorny, V., & Martins, R. A. (2014). Free field realizations of the Date-Jimbo-Kashiwara-Miwa algebra. In Developments and retrospectives in Lie theory: algebraic methods. Cham: Springer. doi:10.1007/978-3-319-09804-3_5
    • NLM

      Cox B, Futorny V, Martins RA. Free field realizations of the Date-Jimbo-Kashiwara-Miwa algebra [Internet]. In: Developments and retrospectives in Lie theory: algebraic methods. Cham: Springer; 2014. [citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-3-319-09804-3_5
    • Vancouver

      Cox B, Futorny V, Martins RA. Free field realizations of the Date-Jimbo-Kashiwara-Miwa algebra [Internet]. In: Developments and retrospectives in Lie theory: algebraic methods. Cham: Springer; 2014. [citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-3-319-09804-3_5
  • Source: Indagationes Mathematicae. Conference titles: Poisson Geometry in Mathematics and Physics - Poisson. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRAINIC, Marius e SCHÄTZ, Florian e STRUCHINER, Ivan. A survey on stability and rigidity results for Lie algebras. Indagationes Mathematicae. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.indag.2014.07.015. Acesso em: 02 nov. 2024. , 2014
    • APA

      Crainic, M., Schätz, F., & Struchiner, I. (2014). A survey on stability and rigidity results for Lie algebras. Indagationes Mathematicae. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.indag.2014.07.015
    • NLM

      Crainic M, Schätz F, Struchiner I. A survey on stability and rigidity results for Lie algebras [Internet]. Indagationes Mathematicae. 2014 ; 25( 5): 957-976.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.indag.2014.07.015
    • Vancouver

      Crainic M, Schätz F, Struchiner I. A survey on stability and rigidity results for Lie algebras [Internet]. Indagationes Mathematicae. 2014 ; 25( 5): 957-976.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.indag.2014.07.015
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, CATEGORIAS ABELIANAS, GRUPOS ALGÉBRICOS LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e MARKO, Frantisek. Derived representation type of Schur superalgebras. Communications in Algebra, v. 42, n. 8, p. 3381-3385, 2014Tradução . . Disponível em: https://doi.org/10.1080/00927872.2013.783043. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., & Marko, F. (2014). Derived representation type of Schur superalgebras. Communications in Algebra, 42( 8), 3381-3385. doi:10.1080/00927872.2013.783043
    • NLM

      Futorny V, Marko F. Derived representation type of Schur superalgebras [Internet]. Communications in Algebra. 2014 ; 42( 8): 3381-3385.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2013.783043
    • Vancouver

      Futorny V, Marko F. Derived representation type of Schur superalgebras [Internet]. Communications in Algebra. 2014 ; 42( 8): 3381-3385.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2013.783043
  • Source: Developments and retrospectives in Lie theory: algebraic methods. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KASHUBA, Iryna. Generalized loop modules for affine Kac–Moody algebras. Developments and retrospectives in Lie theory: algebraic methods. Tradução . Cham: Springer, 2014. . Disponível em: https://doi.org/10.1007/978-3-319-09804-3_8. Acesso em: 02 nov. 2024.
    • APA

      Futorny, V., & Kashuba, I. (2014). Generalized loop modules for affine Kac–Moody algebras. In Developments and retrospectives in Lie theory: algebraic methods. Cham: Springer. doi:10.1007/978-3-319-09804-3_8
    • NLM

      Futorny V, Kashuba I. Generalized loop modules for affine Kac–Moody algebras [Internet]. In: Developments and retrospectives in Lie theory: algebraic methods. Cham: Springer; 2014. [citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-3-319-09804-3_8
    • Vancouver

      Futorny V, Kashuba I. Generalized loop modules for affine Kac–Moody algebras [Internet]. In: Developments and retrospectives in Lie theory: algebraic methods. Cham: Springer; 2014. [citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/978-3-319-09804-3_8
  • Source: Bulletin of Mathematical Sciences. Unidade: IME

    Subjects: ÁLGEBRAS DE HOPF, ÁLGEBRAS DE LIE, GRUPOS DE LIE, GRUPOS NILPOTENTES, LAÇOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOSTOVOY, Jacob e PEREZ-IZQUIERDO, José Maria e SHESTAKOV, Ivan P. Hopf algebras in non-associative Lie theory. Bulletin of Mathematical Sciences, v. 4, n. 1, p. 129-173, 2014Tradução . . Disponível em: https://doi.org/10.1007/s13373-013-0049-8. Acesso em: 02 nov. 2024.
    • APA

      Mostovoy, J., Perez-Izquierdo, J. M., & Shestakov, I. P. (2014). Hopf algebras in non-associative Lie theory. Bulletin of Mathematical Sciences, 4( 1), 129-173. doi:10.1007/s13373-013-0049-8
    • NLM

      Mostovoy J, Perez-Izquierdo JM, Shestakov IP. Hopf algebras in non-associative Lie theory [Internet]. Bulletin of Mathematical Sciences. 2014 ; 4( 1): 129-173.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s13373-013-0049-8
    • Vancouver

      Mostovoy J, Perez-Izquierdo JM, Shestakov IP. Hopf algebras in non-associative Lie theory [Internet]. Bulletin of Mathematical Sciences. 2014 ; 4( 1): 129-173.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s13373-013-0049-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024