Filtros : "ÁLGEBRAS DE LIE" "Ucrânia" Removidos: "Chu, L Y W" "China" "Food and Chemical Toxicology" Limpar

Filtros



Refine with date range


  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEKKERT, Viktor e DROZD, Yuriy e FUTORNY, Vyacheslav. Tilting, deformations and representations of linear groups over Euclidean algebras. Journal of Pure and Applied Algebra, v. 217, n. 6, p. 1141-1162, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2012.09.031. Acesso em: 19 nov. 2024.
    • APA

      Bekkert, V., Drozd, Y., & Futorny, V. (2013). Tilting, deformations and representations of linear groups over Euclidean algebras. Journal of Pure and Applied Algebra, 217( 6), 1141-1162. doi:10.1016/j.jpaa.2012.09.031
    • NLM

      Bekkert V, Drozd Y, Futorny V. Tilting, deformations and representations of linear groups over Euclidean algebras [Internet]. Journal of Pure and Applied Algebra. 2013 ; 217( 6): 1141-1162.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jpaa.2012.09.031
    • Vancouver

      Bekkert V, Drozd Y, Futorny V. Tilting, deformations and representations of linear groups over Euclidean algebras [Internet]. Journal of Pure and Applied Algebra. 2013 ; 217( 6): 1141-1162.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jpaa.2012.09.031
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GRUPOS QUÂNTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e MOLEV, Alexander e OVSIENKO, Serge. The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite W-algebras. Advances in Mathematics, v. 223, n. 3, p. 773-796, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2009.08.018. Acesso em: 19 nov. 2024.
    • APA

      Futorny, V., Molev, A., & Ovsienko, S. (2010). The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite W-algebras. Advances in Mathematics, 223( 3), 773-796. doi:10.1016/j.aim.2009.08.018
    • NLM

      Futorny V, Molev A, Ovsienko S. The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite W-algebras [Internet]. Advances in Mathematics. 2010 ; 223( 3): 773-796.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.aim.2009.08.018
    • Vancouver

      Futorny V, Molev A, Ovsienko S. The Gelfand-Kirillov conjecture and Gelfand-Tsetlin modules for finite W-algebras [Internet]. Advances in Mathematics. 2010 ; 223( 3): 773-796.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.aim.2009.08.018
  • Source: Representation theory: an electronic Journal of the American Mathematical Society. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e MOLEV, Alexander e OVSIENKO, Serge. Harish-Chandra modules for Yangians. Representation theory: an electronic Journal of the American Mathematical Society, v. 9, p. 426-454, 2005Tradução . . Disponível em: https://doi.org/10.1090/S1088-4165-05-00195-0. Acesso em: 19 nov. 2024.
    • APA

      Futorny, V., Molev, A., & Ovsienko, S. (2005). Harish-Chandra modules for Yangians. Representation theory: an electronic Journal of the American Mathematical Society, 9, 426-454. doi:10.1090/S1088-4165-05-00195-0
    • NLM

      Futorny V, Molev A, Ovsienko S. Harish-Chandra modules for Yangians [Internet]. Representation theory: an electronic Journal of the American Mathematical Society. 2005 ; 9 426-454.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1090/S1088-4165-05-00195-0
    • Vancouver

      Futorny V, Molev A, Ovsienko S. Harish-Chandra modules for Yangians [Internet]. Representation theory: an electronic Journal of the American Mathematical Society. 2005 ; 9 426-454.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1090/S1088-4165-05-00195-0
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e TSYLKE, Andrew A. Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine Lie algebras. Journal of Algebra, v. 238, n. 2, p. 426-441, 2001Tradução . . Disponível em: https://doi.org/10.1006/jabr.2000.8648. Acesso em: 19 nov. 2024.
    • APA

      Futorny, V., & Tsylke, A. A. (2001). Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine Lie algebras. Journal of Algebra, 238( 2), 426-441. doi:10.1006/jabr.2000.8648
    • NLM

      Futorny V, Tsylke AA. Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine Lie algebras [Internet]. Journal of Algebra. 2001 ; 238( 2): 426-441.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1006/jabr.2000.8648
    • Vancouver

      Futorny V, Tsylke AA. Classification of irreducible nonzero level modules with finite-dimensional weight spaces for affine Lie algebras [Internet]. Journal of Algebra. 2001 ; 238( 2): 426-441.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1006/jabr.2000.8648
  • Source: Forum Mathematicum. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KONIG, Steffen e MAZORCHUK, Volodymyr. Categories of induced modules for Lie algebras with triangular decomposition. Forum Mathematicum, v. 13, n. 5, p. 641-661, 2001Tradução . . Disponível em: https://doi.org/10.1515/form.2001.027. Acesso em: 19 nov. 2024.
    • APA

      Futorny, V., Konig, S., & Mazorchuk, V. (2001). Categories of induced modules for Lie algebras with triangular decomposition. Forum Mathematicum, 13( 5), 641-661. doi:10.1515/form.2001.027
    • NLM

      Futorny V, Konig S, Mazorchuk V. Categories of induced modules for Lie algebras with triangular decomposition [Internet]. Forum Mathematicum. 2001 ; 13( 5): 641-661.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1515/form.2001.027
    • Vancouver

      Futorny V, Konig S, Mazorchuk V. Categories of induced modules for Lie algebras with triangular decomposition [Internet]. Forum Mathematicum. 2001 ; 13( 5): 641-661.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1515/form.2001.027
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KONIG, Steffen e MAZORCHUK, Volodymyr. A combinatorial description of blocks in O(P, Lambda) associated with sl(2)-induction. Journal of Algebra, v. 231, n. 1, p. 86-103, 2000Tradução . . Disponível em: https://doi.org/10.1006/jabr.2000.8356. Acesso em: 19 nov. 2024.
    • APA

      Futorny, V., Konig, S., & Mazorchuk, V. (2000). A combinatorial description of blocks in O(P, Lambda) associated with sl(2)-induction. Journal of Algebra, 231( 1), 86-103. doi:10.1006/jabr.2000.8356
    • NLM

      Futorny V, Konig S, Mazorchuk V. A combinatorial description of blocks in O(P, Lambda) associated with sl(2)-induction [Internet]. Journal of Algebra. 2000 ; 231( 1): 86-103.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1006/jabr.2000.8356
    • Vancouver

      Futorny V, Konig S, Mazorchuk V. A combinatorial description of blocks in O(P, Lambda) associated with sl(2)-induction [Internet]. Journal of Algebra. 2000 ; 231( 1): 86-103.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1006/jabr.2000.8356

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024