Filtros : "ÁLGEBRA LINEAR" "Espanha" Removido: "Universidade Federal de Itajubá (UNIFEI)" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Conference titles: Linear Algebra without Borders - ILAS Conference. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. Disponível em: https://doi.org/10.1016/j.laa.2020.12.009. Acesso em: 09 nov. 2024. , 2021
    • APA

      Futorny, V., Klymchuk, T., Klymenko, O., Sergeichuk, V. V., & Shvai, N. (2021). Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. doi:10.1016/j.laa.2020.12.009
    • NLM

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
    • Vancouver

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, v. 536, p. 201-209, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.09.019. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., Petravchuk, A. P., & Sergeichuk, V. V. (2018). Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, 536, 201-209. doi:10.1016/j.laa.2017.09.019
    • NLM

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
    • Vancouver

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, v. 527, p. 294-302, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.04.011. Acesso em: 09 nov. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. doi:10.1016/j.laa.2017.04.011
    • NLM

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
    • Vancouver

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, MATRIZES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KLYMCHUK, Tatiana e SERGEICHUK, Vladimir V. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, v. 510, p. 246-258, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.08.022. Acesso em: 09 nov. 2024.
    • APA

      Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2016). Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, 510, 246-258. doi:10.1016/j.laa.2016.08.022
    • NLM

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
    • Vancouver

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
  • Source: AIAA Journal. Unidade: EESC

    Subjects: MECÂNICA DOS FLUÍDOS, ÁLGEBRA LINEAR, EQUAÇÕES DE NAVIER-STOKES, ENGENHARIA AERONÁUTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GENNARO, Elmer Mateus et al. Sparse techniques in global flow instability with application to compressible leading-edge flow. AIAA Journal, v. 51, n. 9, p. Se 2013, 2013Tradução . . Disponível em: https://doi.org/10.2514/1.J051816. Acesso em: 09 nov. 2024.
    • APA

      Gennaro, E. M., Rodríguez, D., Medeiros, M. A. F. de, & Theofilis, V. (2013). Sparse techniques in global flow instability with application to compressible leading-edge flow. AIAA Journal, 51( 9), Se 2013. doi:10.2514/1.J051816
    • NLM

      Gennaro EM, Rodríguez D, Medeiros MAF de, Theofilis V. Sparse techniques in global flow instability with application to compressible leading-edge flow [Internet]. AIAA Journal. 2013 ; 51( 9): Se 2013.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2514/1.J051816
    • Vancouver

      Gennaro EM, Rodríguez D, Medeiros MAF de, Theofilis V. Sparse techniques in global flow instability with application to compressible leading-edge flow [Internet]. AIAA Journal. 2013 ; 51( 9): Se 2013.[citado 2024 nov. 09 ] Available from: https://doi.org/10.2514/1.J051816

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024