Filtros : "Indexado no Zentralblatt MATH" "University of Liverpool" "ICMC" Removidos: "2015" "IEEE Transactions on Visualization and Computer Graphics" Limpar

Filtros



Refine with date range


  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FORMAS QUADRÁTICAS, CONGRUÊNCIAS, SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUCE, James William e TARI, Farid. Binary differential equations associated to congruences of lines in Euclidean 3-space. Bulletin of the Brazilian Mathematical Society : New Series, v. 54, n. 4, p. 1-21, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00574-023-00373-5. Acesso em: 10 nov. 2024.
    • APA

      Bruce, J. W., & Tari, F. (2023). Binary differential equations associated to congruences of lines in Euclidean 3-space. Bulletin of the Brazilian Mathematical Society : New Series, 54( 4), 1-21. doi:10.1007/s00574-023-00373-5
    • NLM

      Bruce JW, Tari F. Binary differential equations associated to congruences of lines in Euclidean 3-space [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2023 ; 54( 4): 1-21.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s00574-023-00373-5
    • Vancouver

      Bruce JW, Tari F. Binary differential equations associated to congruences of lines in Euclidean 3-space [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2023 ; 54( 4): 1-21.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s00574-023-00373-5
  • Source: Journal of Singularities. Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA CONVEXA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIBLIN, Peter J. e JANECZKO, Stanisław e RUAS, Maria Aparecida Soares. Reflexion maps and geometry of surfaces in 'R POT. 4'. Journal of Singularities, v. 21, p. 84-96, 2020Tradução . . Disponível em: https://doi.org/10.5427/jsing.2020.21e. Acesso em: 10 nov. 2024.
    • APA

      Giblin, P. J., Janeczko, S., & Ruas, M. A. S. (2020). Reflexion maps and geometry of surfaces in 'R POT. 4'. Journal of Singularities, 21, 84-96. doi:10.5427/jsing.2020.21e
    • NLM

      Giblin PJ, Janeczko S, Ruas MAS. Reflexion maps and geometry of surfaces in 'R POT. 4' [Internet]. Journal of Singularities. 2020 ; 21 84-96.[citado 2024 nov. 10 ] Available from: https://doi.org/10.5427/jsing.2020.21e
    • Vancouver

      Giblin PJ, Janeczko S, Ruas MAS. Reflexion maps and geometry of surfaces in 'R POT. 4' [Internet]. Journal of Singularities. 2020 ; 21 84-96.[citado 2024 nov. 10 ] Available from: https://doi.org/10.5427/jsing.2020.21e
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES, EQUAÇÕES ALGÉBRICAS DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUCE, J W e TARI, Farid. Frame and direction mappings for surfaces in 'R POT. 3'. Proceedings of the Royal Society of Edinburgh, v. 149, n. 3, p. 795-830, 2019Tradução . . Disponível em: https://doi.org/10.1017/prm.2018.42. Acesso em: 10 nov. 2024.
    • APA

      Bruce, J. W., & Tari, F. (2019). Frame and direction mappings for surfaces in 'R POT. 3'. Proceedings of the Royal Society of Edinburgh, 149( 3), 795-830. doi:10.1017/prm.2018.42
    • NLM

      Bruce JW, Tari F. Frame and direction mappings for surfaces in 'R POT. 3' [Internet]. Proceedings of the Royal Society of Edinburgh. 2019 ; 149( 3): 795-830.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/prm.2018.42
    • Vancouver

      Bruce JW, Tari F. Frame and direction mappings for surfaces in 'R POT. 3' [Internet]. Proceedings of the Royal Society of Edinburgh. 2019 ; 149( 3): 795-830.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1017/prm.2018.42

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024