Filtros : "Indexado no Zentralblatt MATH" "ATRATORES" Removidos: "Universidade Federal do ABC (UFABC)" "2016" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCANEGRA-RODRÍGUEZ, Lito Edinson et al. Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, v. 35, n. 2, p. 1435-1456, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09955-7. Acesso em: 18 nov. 2024.
    • APA

      Bocanegra-Rodríguez, L. E., Silva, M. A. J. da, Ma, T. F., & Seminario-Huertas, P. N. (2023). Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, 35( 2), 1435-1456. doi:10.1007/s10884-021-09955-7
    • NLM

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
    • Vancouver

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
  • Fonte: Revista Matematica Complutense. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, v. 36, n. 3, p. 725-747, 2023Tradução . . Disponível em: https://doi.org/10.1007/s13163-022-00435-0. Acesso em: 18 nov. 2024.
    • APA

      Lappicy, P. (2023). Sturm attractors for fully nonlinear parabolic equations. Revista Matematica Complutense, 36( 3), 725-747. doi:10.1007/s13163-022-00435-0
    • NLM

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
    • Vancouver

      Lappicy P. Sturm attractors for fully nonlinear parabolic equations [Internet]. Revista Matematica Complutense. 2023 ; 36( 3): 725-747.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s13163-022-00435-0
  • Fonte: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Assuntos: ANÁLISE GLOBAL, ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA DIFERENCIAL, ESPAÇOS SIMÉTRICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, v. 28, n. Ja 2023, p. 426-448, 2023Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2022083. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, Rocha, L. R. N., Langa, J. A., & Obaya, R. (2023). Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, 28( Ja 2023), 426-448. doi:10.3934/dcdsb.2022083
    • NLM

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2022083
    • Vancouver

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2022083
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BANAṤKIEWICZ, Jakub et al. Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-022-10239-x. Acesso em: 18 nov. 2024.
    • APA

      Banaṥkiewicz, J., Carvalho, A. N. de, Garcia-Fuentes, J., & Kalita, P. (2022). Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-022-10239-x
    • NLM

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2022 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
    • Vancouver

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2022 ;[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Fonte: Stochastics and Dynamics. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, v. No 2022, n. 7, p. 2240024-1-2240024-28, 2022Tradução . . Disponível em: https://doi.org/10.1142/S021949372240024X. Acesso em: 18 nov. 2024.
    • APA

      Caraballo, T., Langa, J. A., Carvalho, A. N. de, & Oliveira-Sousa, A. do N. (2022). Continuity and topological structural stability for nonautonomous random attractors. Stochastics and Dynamics, No 2022( 7), 2240024-1-2240024-28. doi:10.1142/S021949372240024X
    • NLM

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S021949372240024X
    • Vancouver

      Caraballo T, Langa JA, Carvalho AN de, Oliveira-Sousa A do N. Continuity and topological structural stability for nonautonomous random attractors [Internet]. Stochastics and Dynamics. 2022 ; No 2022( 7): 2240024-1-2240024-28.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S021949372240024X
  • Fonte: Nonlinear Analysis. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e NASCIMENTO, Marcelo José Dias e RUBIO, Obidio. Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary. Nonlinear Analysis, v. 225, p. 1-35, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2022.113107. Acesso em: 18 nov. 2024.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., & Rubio, O. (2022). Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary. Nonlinear Analysis, 225, 1-35. doi:10.1016/j.na.2022.113107
    • NLM

      López-Lázaro H, Nascimento MJD, Rubio O. Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary [Internet]. Nonlinear Analysis. 2022 ; 225 1-35.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.na.2022.113107
    • Vancouver

      López-Lázaro H, Nascimento MJD, Rubio O. Finite fractal dimension of pullback attractors for semilinear heat equation with delay in some domain with moving boundary [Internet]. Nonlinear Analysis. 2022 ; 225 1-35.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.na.2022.113107
  • Fonte: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Assuntos: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Rawlilson de Oliveira et al. Global attractors for a system of elasticity with small delays. Mathematical Methods in the Applied Sciences, v. 44, n. 8, p. 6911-6922, 2021Tradução . . Disponível em: https://doi.org/10.1002/mma.7232. Acesso em: 18 nov. 2024.
    • APA

      Araújo, R. de O., Bocanegra-Rodríguez, L. E., Calsavara, B. M. R., Seminario-Huertas, P. N., & Sotelo-Pejerrey, A. (2021). Global attractors for a system of elasticity with small delays. Mathematical Methods in the Applied Sciences, 44( 8), 6911-6922. doi:10.1002/mma.7232
    • NLM

      Araújo R de O, Bocanegra-Rodríguez LE, Calsavara BMR, Seminario-Huertas PN, Sotelo-Pejerrey A. Global attractors for a system of elasticity with small delays [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 44( 8): 6911-6922.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1002/mma.7232
    • Vancouver

      Araújo R de O, Bocanegra-Rodríguez LE, Calsavara BMR, Seminario-Huertas PN, Sotelo-Pejerrey A. Global attractors for a system of elasticity with small delays [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 44( 8): 6911-6922.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1002/mma.7232
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO, ATRATORES, OPERADORES

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e MOREIRA, Estefani Moraes. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, v. No 2021, p. 312-336, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.07.044. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, & Moreira, E. M. (2021). Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, No 2021, 312-336. doi:10.1016/j.jde.2021.07.044
    • NLM

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
    • Vancouver

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
  • Fonte: Journal of Differential Equations. Unidades: FFCLRP, ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SEMIGRUPOS DE OPERADORES LINEARES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e FERNANDES, Denis e WU, Jianhong. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, v. No 2021, p. 753-806, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.014. Acesso em: 18 nov. 2024.
    • APA

      Hernandez, E., Fernandes, D., & Wu, J. (2021). Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, No 2021, 753-806. doi:10.1016/j.jde.2021.09.014
    • NLM

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
    • Vancouver

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong et al. Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, v. 285, p. 383-428, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.03.013. Acesso em: 18 nov. 2024.
    • APA

      Cui, H., Carvalho, A. N. de, Cunha, A. C., & Langa, J. A. (2021). Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, 285, 383-428. doi:10.1016/j.jde.2021.03.013
    • NLM

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
    • Vancouver

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
  • Fonte: Applied Mathematics and Optimization. Unidade: ICMC

    Assuntos: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YANG, Xin-Guang et al. Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains. Applied Mathematics and Optimization, v. 83, n. 3, p. 2129-2183, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00245-019-09622-w. Acesso em: 18 nov. 2024.
    • APA

      Yang, X. -G., Qin, Y., Lu, Y., & Ma, T. F. (2021). Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains. Applied Mathematics and Optimization, 83( 3), 2129-2183. doi:10.1007/s00245-019-09622-w
    • NLM

      Yang X-G, Qin Y, Lu Y, Ma TF. Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains [Internet]. Applied Mathematics and Optimization. 2021 ; 83( 3): 2129-2183.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00245-019-09622-w
    • Vancouver

      Yang X-G, Qin Y, Lu Y, Ma TF. Dynamics of 2D incompressible non-autonomous Navier–Stokes equations on Lipschitz-like domains [Internet]. Applied Mathematics and Optimization. 2021 ; 83( 3): 2129-2183.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s00245-019-09622-w
  • Fonte: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Assuntos: TEORIA QUALITATIVA, INVARIANTES, ATRATORES, CAOS (SISTEMAS DINÂMICOS)

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho e OLIVEIRA, Regilene Delazari dos Santos. Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, v. 26, n. 3, p. 1653-1673, 2021Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020177. Acesso em: 18 nov. 2024.
    • APA

      Mota, M. C., & Oliveira, R. D. dos S. (2021). Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, 26( 3), 1653-1673. doi:10.3934/dcdsb.2020177
    • NLM

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2020177
    • Vancouver

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2020177
  • Fonte: Indiana University Mathematics Journal. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini e CARVALHO, Alexandre Nolasco de e PIMENTEL, Juliana Fernandes da Silva. Limiting grow-up behavior for a one-parameter family of dissipative PDEs. Indiana University Mathematics Journal, v. 69, n. 2, p. 657-683, 2020Tradução . . Disponível em: https://doi.org/10.1512/iumj.2020.69.7836. Acesso em: 18 nov. 2024.
    • APA

      Bruschi, S. M., Carvalho, A. N. de, & Pimentel, J. F. da S. (2020). Limiting grow-up behavior for a one-parameter family of dissipative PDEs. Indiana University Mathematics Journal, 69( 2), 657-683. doi:10.1512/iumj.2020.69.7836
    • NLM

      Bruschi SM, Carvalho AN de, Pimentel JF da S. Limiting grow-up behavior for a one-parameter family of dissipative PDEs [Internet]. Indiana University Mathematics Journal. 2020 ; 69( 2): 657-683.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1512/iumj.2020.69.7836
    • Vancouver

      Bruschi SM, Carvalho AN de, Pimentel JF da S. Limiting grow-up behavior for a one-parameter family of dissipative PDEs [Internet]. Indiana University Mathematics Journal. 2020 ; 69( 2): 657-683.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1512/iumj.2020.69.7836
  • Fonte: Journal of Geometric Analysis. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, ATRATORES, INVARIANTES, ESTABILIDADE DE SISTEMAS, CONTROLABILIDADE, TEORIA DAS SINGULARIDADES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e KALITA, Piotr. On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, v. 30, p. 1412–1449, 2020Tradução . . Disponível em: https://doi.org/10.1007/s12220-019-00143-0. Acesso em: 18 nov. 2024.
    • APA

      Bonotto, E. de M., & Kalita, P. (2020). On attractors of generalized semiflows with impulses. Journal of Geometric Analysis, 30, 1412–1449. doi:10.1007/s12220-019-00143-0
    • NLM

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
    • Vancouver

      Bonotto E de M, Kalita P. On attractors of generalized semiflows with impulses [Internet]. Journal of Geometric Analysis. 2020 ; 30 1412–1449.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s12220-019-00143-0
  • Fonte: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de e NASCIMENTO, Marcelo José Dias. Fractional approximations of abstract semilinear parabolic problems. Discrete and Continuous Dynamical Systems : Series B, v. No 2020, n. 11, p. 4221-4255, 2020Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020095. Acesso em: 18 nov. 2024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, & Nascimento, M. J. D. (2020). Fractional approximations of abstract semilinear parabolic problems. Discrete and Continuous Dynamical Systems : Series B, No 2020( 11), 4221-4255. doi:10.3934/dcdsb.2020095
    • NLM

      Bezerra FDM, Carvalho AN de, Nascimento MJD. Fractional approximations of abstract semilinear parabolic problems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; No 2020( 11): 4221-4255.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2020095
    • Vancouver

      Bezerra FDM, Carvalho AN de, Nascimento MJD. Fractional approximations of abstract semilinear parabolic problems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; No 2020( 11): 4221-4255.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcdsb.2020095
  • Fonte: Communications on Pure and Applied Analysis. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, ATRATORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LANGA, José Antonio e ROBINSON, James C. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1997-2013, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020088. Acesso em: 18 nov. 2024.
    • APA

      Carvalho, A. N. de, Langa, J. A., & Robinson, J. C. (2020). Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 19( 4), 1997-2013. doi:10.3934/cpaa.2020088
    • NLM

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/cpaa.2020088
    • Vancouver

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/cpaa.2020088
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS NÃO LINEARES, MECÂNICA DOS SÓLIDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, Eduardo Henrique Gomes e SILVA, Marcio A. Jorge e NARCISO, Vando. Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, v. 32, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09766-x. Acesso em: 18 nov. 2024.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Narciso, V. (2020). Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, 32( 3), Se 2020. doi:10.1007/s10884-019-09766-x
    • NLM

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
    • Vancouver

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, v. 32, n. 1, p. 359-390, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-018-9720-9. Acesso em: 18 nov. 2024.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-018-9720-9
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1007/s10884-018-9720-9
  • Fonte: Communications on Pure and Applied Analysis. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e SEMINARIO-HUERTAS, Paulo Nicanor. Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 2219-2233, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020097. Acesso em: 18 nov. 2024.
    • APA

      Ma, T. F., & Seminario-Huertas, P. N. (2020). Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, 19( 4), 2219-2233. doi:10.3934/cpaa.2020097
    • NLM

      Ma TF, Seminario-Huertas PN. Attractors for semilinear wave equations with localized damping and external forces [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 2219-2233.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/cpaa.2020097
    • Vancouver

      Ma TF, Seminario-Huertas PN. Attractors for semilinear wave equations with localized damping and external forces [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 2219-2233.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/cpaa.2020097

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024