Filtros : "Indexado no Zent-Math" "Estados Unidos" "ICMC" Removidos: "EACH-GPP-86" "1982" "Financiamento NSF" "FE" Limpar

Filtros



Refine with date range


  • Source: Eletronic Journal of Differential Equations - EJDE. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUEVAS, Cláudio e FRASSON, Miguel Vinicius Santini. Asymptotic properties of solutions to linear nonautonomous delay differential equations through generalized characteristic equations. Eletronic Journal of Differential Equations - EJDE, v. 2010, n. 95, p. 1-5, 2010Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 17 nov. 2024.
    • APA

      Cuevas, C., & Frasson, M. V. S. (2010). Asymptotic properties of solutions to linear nonautonomous delay differential equations through generalized characteristic equations. Eletronic Journal of Differential Equations - EJDE, 2010( 95), 1-5. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Cuevas C, Frasson MVS. Asymptotic properties of solutions to linear nonautonomous delay differential equations through generalized characteristic equations [Internet]. Eletronic Journal of Differential Equations - EJDE. 2010 ; 2010( 95): 1-5.[citado 2024 nov. 17 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Cuevas C, Frasson MVS. Asymptotic properties of solutions to linear nonautonomous delay differential equations through generalized characteristic equations [Internet]. Eletronic Journal of Differential Equations - EJDE. 2010 ; 2010( 95): 1-5.[citado 2024 nov. 17 ] Available from: http://ejde.math.txstate.edu/
  • Source: Czechoslovak Mathematical Journal. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia. The monotone convergence theorem for multidimensional abstract kurzweil vector integrals. Czechoslovak Mathematical Journal, v. 52, n. 127, p. 429-437, 2002Tradução . . Disponível em: https://doi.org/10.1023/a:1021747232708. Acesso em: 17 nov. 2024.
    • APA

      Federson, M. (2002). The monotone convergence theorem for multidimensional abstract kurzweil vector integrals. Czechoslovak Mathematical Journal, 52( 127), 429-437. doi:10.1023/a:1021747232708
    • NLM

      Federson M. The monotone convergence theorem for multidimensional abstract kurzweil vector integrals [Internet]. Czechoslovak Mathematical Journal. 2002 ; 52( 127): 429-437.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1023/a:1021747232708
    • Vancouver

      Federson M. The monotone convergence theorem for multidimensional abstract kurzweil vector integrals [Internet]. Czechoslovak Mathematical Journal. 2002 ; 52( 127): 429-437.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1023/a:1021747232708
  • Source: Czechoslovak Mathematical Journal. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia. A constructive integral equivalent to the integral of kurzweil. Czechoslovak Mathematical Journal, v. 52, n. 127, p. 365-367, 2002Tradução . . Disponível em: https://doi.org/10.1023/a:1021734929982. Acesso em: 17 nov. 2024.
    • APA

      Federson, M. (2002). A constructive integral equivalent to the integral of kurzweil. Czechoslovak Mathematical Journal, 52( 127), 365-367. doi:10.1023/a:1021734929982
    • NLM

      Federson M. A constructive integral equivalent to the integral of kurzweil [Internet]. Czechoslovak Mathematical Journal. 2002 ; 52( 127): 365-367.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1023/a:1021734929982
    • Vancouver

      Federson M. A constructive integral equivalent to the integral of kurzweil [Internet]. Czechoslovak Mathematical Journal. 2002 ; 52( 127): 365-367.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1023/a:1021734929982
  • Source: Eletronic Journal of Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo. Existence results for a class of semi-linear evolution equations. Eletronic Journal of Differential Equations, v. 24, p. 1-14, 2001Tradução . . Disponível em: http://ejde.math.swt.edu/. Acesso em: 17 nov. 2024.
    • APA

      Hernandez, E. (2001). Existence results for a class of semi-linear evolution equations. Eletronic Journal of Differential Equations, 24, 1-14. Recuperado de http://ejde.math.swt.edu/
    • NLM

      Hernandez E. Existence results for a class of semi-linear evolution equations [Internet]. Eletronic Journal of Differential Equations. 2001 ; 24 1-14.[citado 2024 nov. 17 ] Available from: http://ejde.math.swt.edu/
    • Vancouver

      Hernandez E. Existence results for a class of semi-linear evolution equations [Internet]. Eletronic Journal of Differential Equations. 2001 ; 24 1-14.[citado 2024 nov. 17 ] Available from: http://ejde.math.swt.edu/
  • Source: Pacific Journal of Mathematics. Unidade: ICMC

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIASI, Carlos e DACCACH, Janey Antônio e SAEKI, Osamu. A primary obstruction to topological embeddings for maps between generalized manifolds. Pacific Journal of Mathematics, v. 197, n. 2, p. 275-289, 2001Tradução . . Disponível em: https://doi.org/10.2140/pjm.2001.197.275. Acesso em: 17 nov. 2024.
    • APA

      Biasi, C., Daccach, J. A., & Saeki, O. (2001). A primary obstruction to topological embeddings for maps between generalized manifolds. Pacific Journal of Mathematics, 197( 2), 275-289. doi:10.2140/pjm.2001.197.275
    • NLM

      Biasi C, Daccach JA, Saeki O. A primary obstruction to topological embeddings for maps between generalized manifolds [Internet]. Pacific Journal of Mathematics. 2001 ; 197( 2): 275-289.[citado 2024 nov. 17 ] Available from: https://doi.org/10.2140/pjm.2001.197.275
    • Vancouver

      Biasi C, Daccach JA, Saeki O. A primary obstruction to topological embeddings for maps between generalized manifolds [Internet]. Pacific Journal of Mathematics. 2001 ; 197( 2): 275-289.[citado 2024 nov. 17 ] Available from: https://doi.org/10.2140/pjm.2001.197.275
  • Source: Applied Mathematics Letters. Unidade: ICMC

    Assunto: FUNÇÕES ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, J M e CARVALHO, Alexandre Nolasco de e RODRIGUES-BERNAL, A. Pertubation of the diffusion and upper semicontinuity of attractors. Applied Mathematics Letters, v. 12, n. 5, p. 37-42, 1999Tradução . . Disponível em: https://doi.org/10.1016/s0893-9659(99)00069-5. Acesso em: 17 nov. 2024.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, & Rodrigues-Bernal, A. (1999). Pertubation of the diffusion and upper semicontinuity of attractors. Applied Mathematics Letters, 12( 5), 37-42. doi:10.1016/s0893-9659(99)00069-5
    • NLM

      Arrieta JM, Carvalho AN de, Rodrigues-Bernal A. Pertubation of the diffusion and upper semicontinuity of attractors [Internet]. Applied Mathematics Letters. 1999 ;12( 5): 37-42.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/s0893-9659(99)00069-5
    • Vancouver

      Arrieta JM, Carvalho AN de, Rodrigues-Bernal A. Pertubation of the diffusion and upper semicontinuity of attractors [Internet]. Applied Mathematics Letters. 1999 ;12( 5): 37-42.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/s0893-9659(99)00069-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024