Filtros : "Indexado no Web of Science" "Bortolan, Matheus Cheque" "Estados Unidos" "ICMC" Removido: "FMRP-RPP" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DE EVOLUÇÃO, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PEREIRA, Fabiano. Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, v. 384, p. 279-325, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.12.008. Acesso em: 10 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pereira, F. (2024). Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, 384, 279-325. doi:10.1016/j.jde.2023.12.008
    • NLM

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
    • Vancouver

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES NÃO LINEARES

    Disponível em 2025-02-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10341-8. Acesso em: 10 nov. 2024.
    • APA

      Belluzi, M., Bortolan, M. C., Castro, U., & Fernandes, J. (2024). Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-023-10341-8
    • NLM

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
    • Vancouver

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 10 nov. 2024.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, v. 33, p. 463-487, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09815-5. Acesso em: 10 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2021). Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, 33, 463-487. doi:10.1007/s10884-019-09815-5
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
  • Source: Discrete and Continuous Dynamical Systems Series B. Unidade: ICMC

    Subjects: MODELO CASCATA, ATRATORES, SEMIGRUPOS (COMBINATÓRIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems. Discrete and Continuous Dynamical Systems Series B, v. 26, n. 9, p. 4645-4661, 2021Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020306. Acesso em: 10 nov. 2024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Collegari, R., & Uzal, J. M. (2021). Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems. Discrete and Continuous Dynamical Systems Series B, 26( 9), 4645-4661. doi:10.3934/dcdsb.2020306
    • NLM

      Bonotto E de M, Bortolan MC, Collegari R, Uzal JM. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems [Internet]. Discrete and Continuous Dynamical Systems Series B. 2021 ; 26( 9): 4645-4661.[citado 2024 nov. 10 ] Available from: https://doi.org/10.3934/dcdsb.2020306
    • Vancouver

      Bonotto E de M, Bortolan MC, Collegari R, Uzal JM. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems [Internet]. Discrete and Continuous Dynamical Systems Series B. 2021 ; 26( 9): 4645-4661.[citado 2024 nov. 10 ] Available from: https://doi.org/10.3934/dcdsb.2020306
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TOPOLOGIA DINÂMICA, TRANSVERSALIDADE, EQUAÇÕES DIFERENCIAIS PARCIAIS, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, v. 269, n. 3, p. 1904-1943, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.01.024. Acesso em: 10 nov. 2024.
    • APA

      Bortolan, M. C., Cardoso, C. A. E. das N., Carvalho, A. N. de, & Pires, L. (2020). Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, 269( 3), 1904-1943. doi:10.1016/j.jde.2020.01.024
    • NLM

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2020.01.024
    • Vancouver

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2020.01.024

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024