Filtros : "Indexado no Scopus" "Journal of Mathematical Analysis and Applications" "ICMC" Removidos: " IFSC007" "University of Maribor - Center for Applied Mathematics and Theoretical Physics" "Grejo, Carolina Bueno" "ICMC-ICMC" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AFONSO, S. M e BONOTTO, Everaldo de Mello e SIQUEIRA, J. On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, v. 540, n. 2, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128622. Acesso em: 17 nov. 2024.
    • APA

      Afonso, S. M., Bonotto, E. de M., & Siqueira, J. (2024). On the ergodic theory of impulsive semiflows. Journal of Mathematical Analysis and Applications, 540( 2), 1-12. doi:10.1016/j.jmaa.2024.128622
    • NLM

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622
    • Vancouver

      Afonso SM, Bonotto E de M, Siqueira J. On the ergodic theory of impulsive semiflows [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 540( 2): 1-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128622
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 17 nov. 2024.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 17 nov. 2024.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: PONTES, EQUAÇÕES DIFERENCIAIS, MÉTODO DOS ELEMENTOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, M. A. Jorge e MA, To Fu e RIVERA, J. E. Muñoz. Mindlin-Timoshenko systems with Kelvin-Voigt: analyticity and optimal decay rates. Journal of Mathematical Analysis and Applications, v. 417, n. 1, p. 164-179, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2014.02.066. Acesso em: 17 nov. 2024.
    • APA

      Silva, M. A. J., Ma, T. F., & Rivera, J. E. M. (2014). Mindlin-Timoshenko systems with Kelvin-Voigt: analyticity and optimal decay rates. Journal of Mathematical Analysis and Applications, 417( 1), 164-179. doi:10.1016/j.jmaa.2014.02.066
    • NLM

      Silva MAJ, Ma TF, Rivera JEM. Mindlin-Timoshenko systems with Kelvin-Voigt: analyticity and optimal decay rates [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 417( 1): 164-179.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2014.02.066
    • Vancouver

      Silva MAJ, Ma TF, Rivera JEM. Mindlin-Timoshenko systems with Kelvin-Voigt: analyticity and optimal decay rates [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 417( 1): 164-179.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2014.02.066
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Alisson Rafael Aguiar e MA, To Fu. Long-time dynamics of an extensible plate equation with thermal memory. Journal of Mathematical Analysis and Applications, v. 416, n. 1, p. 143-165, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2014.02.042. Acesso em: 17 nov. 2024.
    • APA

      Barbosa, A. R. A., & Ma, T. F. (2014). Long-time dynamics of an extensible plate equation with thermal memory. Journal of Mathematical Analysis and Applications, 416( 1), 143-165. doi:10.1016/j.jmaa.2014.02.042
    • NLM

      Barbosa ARA, Ma TF. Long-time dynamics of an extensible plate equation with thermal memory [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 416( 1): 143-165.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2014.02.042
    • Vancouver

      Barbosa ARA, Ma TF. Long-time dynamics of an extensible plate equation with thermal memory [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 416( 1): 143-165.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2014.02.042
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e NARCISO, V e PELICER, M. L. Long-time behavior of a model of extensible beams with nonlinear boundary dissipations. Journal of Mathematical Analysis and Applications, v. 396, n. 2, p. 694-703, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2012.07.004. Acesso em: 17 nov. 2024.
    • APA

      Ma, T. F., Narciso, V., & Pelicer, M. L. (2012). Long-time behavior of a model of extensible beams with nonlinear boundary dissipations. Journal of Mathematical Analysis and Applications, 396( 2), 694-703. doi:10.1016/j.jmaa.2012.07.004
    • NLM

      Ma TF, Narciso V, Pelicer ML. Long-time behavior of a model of extensible beams with nonlinear boundary dissipations [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 396( 2): 694-703.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2012.07.004
    • Vancouver

      Ma TF, Narciso V, Pelicer ML. Long-time behavior of a model of extensible beams with nonlinear boundary dissipations [Internet]. Journal of Mathematical Analysis and Applications. 2012 ; 396( 2): 694-703.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2012.07.004
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez. Existence results for partial neutral functional integrodifferential equations with unbounded delay. Journal of Mathematical Analysis and Applications, v. 292, n. 1, p. 194-210, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2003.11.052. Acesso em: 17 nov. 2024.
    • APA

      Morales, E. A. H. (2004). Existence results for partial neutral functional integrodifferential equations with unbounded delay. Journal of Mathematical Analysis and Applications, 292( 1), 194-210. doi:10.1016/j.jmaa.2003.11.052
    • NLM

      Morales EAH. Existence results for partial neutral functional integrodifferential equations with unbounded delay [Internet]. Journal of Mathematical Analysis and Applications. 2004 ; 292( 1): 194-210.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2003.11.052
    • Vancouver

      Morales EAH. Existence results for partial neutral functional integrodifferential equations with unbounded delay [Internet]. Journal of Mathematical Analysis and Applications. 2004 ; 292( 1): 194-210.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.jmaa.2003.11.052

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024