Filtros : "Indexado no Scopus" "BENEVIERI, PIERLUIGI" "IME" Removidos: "Lancaster University - Lancaster" "IFSC-FCM" "2017" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: GRAU TOPOLÓGICO, ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e CALAMAI, Alessandro e FURI, Massimo. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, v. 46, n. 1, p. 401-430, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.052. Acesso em: 15 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., & Furi, M. (2015). On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, 46( 1), 401-430. doi:10.12775/TMNA.2015.052
    • NLM

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2015.052
    • Vancouver

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2024 nov. 15 ] Available from: https://doi.org/10.12775/TMNA.2015.052
  • Source: Journal of Fixed Point Theory and Applications. Unidade: IME

    Subjects: SOLUÇÕES PERIÓDICAS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, TEOREMA DO PONTO FIXO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi et al. Global continuation of forced oscillations of retarded motion equations on manifolds. Journal of Fixed Point Theory and Applications, v. 16, n. 1-2, p. 273-300, 2014Tradução . . Disponível em: https://doi.org/10.1007/s11784-015-0215-6. Acesso em: 15 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2014). Global continuation of forced oscillations of retarded motion equations on manifolds. Journal of Fixed Point Theory and Applications, 16( 1-2), 273-300. doi:10.1007/s11784-015-0215-6
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation of forced oscillations of retarded motion equations on manifolds [Internet]. Journal of Fixed Point Theory and Applications. 2014 ; 16( 1-2): 273-300.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s11784-015-0215-6
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. Global continuation of forced oscillations of retarded motion equations on manifolds [Internet]. Journal of Fixed Point Theory and Applications. 2014 ; 16( 1-2): 273-300.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s11784-015-0215-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024