Filtros : "Indexado no Current Abstracts" "Journal of Mathematical Analysis and Applications" Removidos: "Polônia" "Hernandez, Michelle Fernanda Pierri" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, EQUAÇÕES DIFERENCIAIS PARCIAIS, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel. Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components. Journal of Mathematical Analysis and Applications, v. 504, n. 1, p. [28] , 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125393. Acesso em: 18 nov. 2024.
    • APA

      D'Abbicco, M., & Ebert, M. R. (2021). Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components. Journal of Mathematical Analysis and Applications, 504( 1), [28] . doi:10.1016/j.jmaa.2021.125393
    • NLM

      D'Abbicco M, Ebert MR. Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 504( 1): [28] .[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125393
    • Vancouver

      D'Abbicco M, Ebert MR. Lp−Lq estimates for a parameter-dependent multiplier with oscillatory and diffusive components [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 504( 1): [28] .[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125393
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOEPFNER, G e HOUNIE, J e PICON, Tiago Henrique. Div–curl type estimates for elliptic systems of complex vector fields. Journal of Mathematical Analysis and Applications, v. 429, n. 2, p. 774-799, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.04.054. Acesso em: 18 nov. 2024.
    • APA

      Hoepfner, G., Hounie, J., & Picon, T. H. (2015). Div–curl type estimates for elliptic systems of complex vector fields. Journal of Mathematical Analysis and Applications, 429( 2), 774-799. doi:10.1016/j.jmaa.2015.04.054
    • NLM

      Hoepfner G, Hounie J, Picon TH. Div–curl type estimates for elliptic systems of complex vector fields [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 429( 2): 774-799.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.054
    • Vancouver

      Hoepfner G, Hounie J, Picon TH. Div–curl type estimates for elliptic systems of complex vector fields [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 429( 2): 774-799.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.054
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, VETORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DATTORI DA SILVA, Paulo Leandro. Nonexistence of global solutions for a class of complex vector fields on two-torus. Journal of Mathematical Analysis and Applications, v. 351, n. 2, p. 543-555, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2008.10.039. Acesso em: 18 nov. 2024.
    • APA

      Dattori da Silva, P. L. (2009). Nonexistence of global solutions for a class of complex vector fields on two-torus. Journal of Mathematical Analysis and Applications, 351( 2), 543-555. doi:10.1016/j.jmaa.2008.10.039
    • NLM

      Dattori da Silva PL. Nonexistence of global solutions for a class of complex vector fields on two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2009 ; 351( 2): 543-555.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2008.10.039
    • Vancouver

      Dattori da Silva PL. Nonexistence of global solutions for a class of complex vector fields on two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2009 ; 351( 2): 543-555.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2008.10.039

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024