Filtros : "Indexado na Web of Science" "HIDROGÊNIO" "IQSC-SQF" Removidos: "ICB" "Schaden, Egon" "Dekant, W" Limpar

Filtros



Limitar por data


  • Fonte: Chemical Communications. Unidade: IQSC

    Assuntos: HIDROGÊNIO, SACARÍDEOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IOST, Rodrigo M et al. Hydrogen bioelectrogeneration with pH-resilient and oxygen-tolerant cobalt apoenzyme-saccharide. Chemical Communications, v. 60, p. 2509, 2024Tradução . . Disponível em: https://doi.org/10.1039/d3cc06185j. Acesso em: 28 jun. 2024.
    • APA

      Iost, R. M., Venkatkarthick, R., Nascimento, S. Q., Lima, F. H. B. de, & Crespilho, F. N. (2024). Hydrogen bioelectrogeneration with pH-resilient and oxygen-tolerant cobalt apoenzyme-saccharide. Chemical Communications, 60, 2509. doi:10.1039/d3cc06185j
    • NLM

      Iost RM, Venkatkarthick R, Nascimento SQ, Lima FHB de, Crespilho FN. Hydrogen bioelectrogeneration with pH-resilient and oxygen-tolerant cobalt apoenzyme-saccharide [Internet]. Chemical Communications. 2024 ;60 2509.[citado 2024 jun. 28 ] Available from: https://doi.org/10.1039/d3cc06185j
    • Vancouver

      Iost RM, Venkatkarthick R, Nascimento SQ, Lima FHB de, Crespilho FN. Hydrogen bioelectrogeneration with pH-resilient and oxygen-tolerant cobalt apoenzyme-saccharide [Internet]. Chemical Communications. 2024 ;60 2509.[citado 2024 jun. 28 ] Available from: https://doi.org/10.1039/d3cc06185j
  • Fonte: Chemical Engineering Research & Design. Unidade: IQSC

    Assuntos: CATÁLISE, HIDROGÊNIO, BIODIESEL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANELLI, Gabriela Santanna et al. Obtaining hydrogen by steam reforming of residual glycerol from biodiesel production using Ni/La2O3-CeO2 catalysts. Chemical Engineering Research & Design, v. 198, p. 312-324, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.cherd.2023.09.005. Acesso em: 28 jun. 2024.
    • APA

      Zanelli, G. S., Lucrédio, A. F., Clemente, A. S., & Assaf, E. M. (2023). Obtaining hydrogen by steam reforming of residual glycerol from biodiesel production using Ni/La2O3-CeO2 catalysts. Chemical Engineering Research & Design, 198, 312-324. doi:10.1016/j.cherd.2023.09.005
    • NLM

      Zanelli GS, Lucrédio AF, Clemente AS, Assaf EM. Obtaining hydrogen by steam reforming of residual glycerol from biodiesel production using Ni/La2O3-CeO2 catalysts [Internet]. Chemical Engineering Research & Design. 2023 ; 198 312-324.[citado 2024 jun. 28 ] Available from: https://doi.org/10.1016/j.cherd.2023.09.005
    • Vancouver

      Zanelli GS, Lucrédio AF, Clemente AS, Assaf EM. Obtaining hydrogen by steam reforming of residual glycerol from biodiesel production using Ni/La2O3-CeO2 catalysts [Internet]. Chemical Engineering Research & Design. 2023 ; 198 312-324.[citado 2024 jun. 28 ] Available from: https://doi.org/10.1016/j.cherd.2023.09.005
  • Fonte: Catalysts. Unidade: IQSC

    Assuntos: HIDROGÊNIO, ELETROCATÁLISE, CARBONO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OMETTO, Felipe Berto et al. Effects of Metal–Support Interaction in the Electrocatalysis of the Hydrogen Evolution Reaction of the Metal-Decorated Titanium Dioxide Supported Carbon. Catalysts, v. 13, p. 22, 2023Tradução . . Disponível em: https://doi.org/10.3390/catal13010022. Acesso em: 28 jun. 2024.
    • APA

      Ometto, F. B., Paganin, V. A., Hammer, P., & Ticianelli, E. A. (2023). Effects of Metal–Support Interaction in the Electrocatalysis of the Hydrogen Evolution Reaction of the Metal-Decorated Titanium Dioxide Supported Carbon. Catalysts, 13, 22. doi:10.3390/catal13010022
    • NLM

      Ometto FB, Paganin VA, Hammer P, Ticianelli EA. Effects of Metal–Support Interaction in the Electrocatalysis of the Hydrogen Evolution Reaction of the Metal-Decorated Titanium Dioxide Supported Carbon [Internet]. Catalysts. 2023 ;13 22.[citado 2024 jun. 28 ] Available from: https://doi.org/10.3390/catal13010022
    • Vancouver

      Ometto FB, Paganin VA, Hammer P, Ticianelli EA. Effects of Metal–Support Interaction in the Electrocatalysis of the Hydrogen Evolution Reaction of the Metal-Decorated Titanium Dioxide Supported Carbon [Internet]. Catalysts. 2023 ;13 22.[citado 2024 jun. 28 ] Available from: https://doi.org/10.3390/catal13010022
  • Fonte: ACS Applied Materials and Interfaces. Unidade: IQSC

    Assuntos: ELETROCATÁLISE, ENERGIA, HIDROGÊNIO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOVERGA, Andrey A. et al. Role of Transition Metals on TM/Mo2C Composites: Hydrogen Evolution Activity in Mildly Acidic and Alkaline Media. ACS Applied Materials and Interfaces, v. 12, n. 24, p. 27150–27165 May, 2020Tradução . . Disponível em: https://doi.org/10.1021/acsami.0c04806. Acesso em: 28 jun. 2024.
    • APA

      Koverga, A. A., Gomez-Marín, A. M., Dorkis, L., Flórez, E., & Ticianelli, E. A. (2020). Role of Transition Metals on TM/Mo2C Composites: Hydrogen Evolution Activity in Mildly Acidic and Alkaline Media. ACS Applied Materials and Interfaces, 12( 24), 27150–27165 May. doi:10.1021/acsami.0c04806
    • NLM

      Koverga AA, Gomez-Marín AM, Dorkis L, Flórez E, Ticianelli EA. Role of Transition Metals on TM/Mo2C Composites: Hydrogen Evolution Activity in Mildly Acidic and Alkaline Media [Internet]. ACS Applied Materials and Interfaces. 2020 ; 12( 24): 27150–27165 May.[citado 2024 jun. 28 ] Available from: https://doi.org/10.1021/acsami.0c04806
    • Vancouver

      Koverga AA, Gomez-Marín AM, Dorkis L, Flórez E, Ticianelli EA. Role of Transition Metals on TM/Mo2C Composites: Hydrogen Evolution Activity in Mildly Acidic and Alkaline Media [Internet]. ACS Applied Materials and Interfaces. 2020 ; 12( 24): 27150–27165 May.[citado 2024 jun. 28 ] Available from: https://doi.org/10.1021/acsami.0c04806
  • Fonte: Journal of the Brazilian Chemical Society. Unidade: IQSC

    Assuntos: HIDROGÊNIO, QUÍMICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IEZZI, Renato Caio et al. CO tolerance and stability of proton exchange membrane fuel cells with nafion and aquivion membranes and Mo‑based anode electrocatalysts. Journal of the Brazilian Chemical Society, v. 29, n. 5, p. 1094-1104, 2018Tradução . . Disponível em: https://doi.org/10.21577/0103-5053.20170230. Acesso em: 28 jun. 2024.
    • APA

      Iezzi, R. C., Santos, R. D. M., Silva, G. C. da, Paganin, V. A., & Ticianelli, E. A. (2018). CO tolerance and stability of proton exchange membrane fuel cells with nafion and aquivion membranes and Mo‑based anode electrocatalysts. Journal of the Brazilian Chemical Society, 29( 5), 1094-1104. doi:10.21577/0103-5053.20170230
    • NLM

      Iezzi RC, Santos RDM, Silva GC da, Paganin VA, Ticianelli EA. CO tolerance and stability of proton exchange membrane fuel cells with nafion and aquivion membranes and Mo‑based anode electrocatalysts [Internet]. Journal of the Brazilian Chemical Society. 2018 ; 29( 5): 1094-1104.[citado 2024 jun. 28 ] Available from: https://doi.org/10.21577/0103-5053.20170230
    • Vancouver

      Iezzi RC, Santos RDM, Silva GC da, Paganin VA, Ticianelli EA. CO tolerance and stability of proton exchange membrane fuel cells with nafion and aquivion membranes and Mo‑based anode electrocatalysts [Internet]. Journal of the Brazilian Chemical Society. 2018 ; 29( 5): 1094-1104.[citado 2024 jun. 28 ] Available from: https://doi.org/10.21577/0103-5053.20170230

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024