Filtros : "Indexado na Web of Science" "ÁLGEBRAS DE LIE" Removido: "Português" Limpar

Filtros



Limitar por data


  • Fonte: Israel Journal of Mathematics. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly e FUTORNY, Vyacheslav. Classification of simple cuspidal modules for solenoidal Lie algebras. Israel Journal of Mathematics, v. 222, n. 1, p. 109-123, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11856-017-1584-x. Acesso em: 02 nov. 2024.
    • APA

      Billig, Y., & Futorny, V. (2017). Classification of simple cuspidal modules for solenoidal Lie algebras. Israel Journal of Mathematics, 222( 1), 109-123. doi:10.1007/s11856-017-1584-x
    • NLM

      Billig Y, Futorny V. Classification of simple cuspidal modules for solenoidal Lie algebras [Internet]. Israel Journal of Mathematics. 2017 ; 222( 1): 109-123.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11856-017-1584-x
    • Vancouver

      Billig Y, Futorny V. Classification of simple cuspidal modules for solenoidal Lie algebras [Internet]. Israel Journal of Mathematics. 2017 ; 222( 1): 109-123.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s11856-017-1584-x
  • Fonte: Algebra and Logic. Unidade: IME

    Assuntos: ÁLGEBRAS DE LIE, GRUPOS ALGÉBRICOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e RASSKAZOVA, M. N. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2. Algebra and Logic, v. 56, n. 4, p. 269-280, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10469-017-9448-3. Acesso em: 02 nov. 2024.
    • APA

      Grichkov, A., & Rasskazova, M. N. (2017). Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2. Algebra and Logic, 56( 4), 269-280. doi:10.1007/s10469-017-9448-3
    • NLM

      Grichkov A, Rasskazova MN. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2 [Internet]. Algebra and Logic. 2017 ; 56( 4): 269-280.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s10469-017-9448-3
    • Vancouver

      Grichkov A, Rasskazova MN. Automorphism groups of diagonal Z p -forms of the Lie algebra sl 2(Q p ), p > 2 [Internet]. Algebra and Logic. 2017 ; 56( 4): 269-280.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1007/s10469-017-9448-3
  • Fonte: Journal of Algebra. Unidade: IME

    Assuntos: ÁLGEBRAS DE JORDAN, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e SERGANOVA, Vera. On the Tits-Kantor-Koecher construction of unital Jordan bimodules. Journal of Algebra, n. 481, p. 420-463-463, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.03.002. Acesso em: 02 nov. 2024.
    • APA

      Kashuba, I., & Serganova, V. (2017). On the Tits-Kantor-Koecher construction of unital Jordan bimodules. Journal of Algebra, ( 481), 420-463-463. doi:10.1016/j.jalgebra.2017.03.002
    • NLM

      Kashuba I, Serganova V. On the Tits-Kantor-Koecher construction of unital Jordan bimodules [Internet]. Journal of Algebra. 2017 ;( 481): 420-463-463.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.03.002
    • Vancouver

      Kashuba I, Serganova V. On the Tits-Kantor-Koecher construction of unital Jordan bimodules [Internet]. Journal of Algebra. 2017 ;( 481): 420-463-463.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.03.002
  • Fonte: Communications in Algebra. Unidade: IME

    Assuntos: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOŁUBOWSKI, Waldemar e KASHUBA, Iryna e ŻUREK, Sebastian. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, v. 45, n. 11, p. 4679-4685, 2017Tradução . . Disponível em: https://doi.org/10.1080/00927872.2016.1277388. Acesso em: 02 nov. 2024.
    • APA

      Hołubowski, W., Kashuba, I., & Żurek, S. (2017). Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, 45( 11), 4679-4685. doi:10.1080/00927872.2016.1277388
    • NLM

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2016.1277388
    • Vancouver

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.[citado 2024 nov. 02 ] Available from: https://doi.org/10.1080/00927872.2016.1277388

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024