Filtros : " IFSC777" "Holanda" Removidos: "MARTINS, MARIA THEREZINHA" "Genética" Limpar

Filtros



Refine with date range


  • Source: Biocatalysis and Agricultural Biotechnology. Unidades: IQSC, IFSC

    Subjects: BIOTECNOLOGIA, NANOPARTÍCULAS, AGRONEGÓCIO, BACTÉRIAS, RESISTÊNCIA MICROBIANA ÀS DROGAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COELHO, Fernanda et al. Exploring the agricultural potential of AgNPs/PlyB221 endolysin bioconjugates as enhanced biocontrol agents. Biocatalysis and Agricultural Biotechnology, v. 56, p. 103040-1-103040-14, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.bcab.2024.103040. Acesso em: 17 nov. 2024.
    • APA

      Coelho, F., Zapata, A. M. M., Machado, T. R., Canduri, F., & Zucolotto, V. (2024). Exploring the agricultural potential of AgNPs/PlyB221 endolysin bioconjugates as enhanced biocontrol agents. Biocatalysis and Agricultural Biotechnology, 56, 103040-1-103040-14. doi:10.1016/j.bcab.2024.103040
    • NLM

      Coelho F, Zapata AMM, Machado TR, Canduri F, Zucolotto V. Exploring the agricultural potential of AgNPs/PlyB221 endolysin bioconjugates as enhanced biocontrol agents [Internet]. Biocatalysis and Agricultural Biotechnology. 2024 ; 56 103040-1-103040-14.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.bcab.2024.103040
    • Vancouver

      Coelho F, Zapata AMM, Machado TR, Canduri F, Zucolotto V. Exploring the agricultural potential of AgNPs/PlyB221 endolysin bioconjugates as enhanced biocontrol agents [Internet]. Biocatalysis and Agricultural Biotechnology. 2024 ; 56 103040-1-103040-14.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.bcab.2024.103040
  • Source: Biosensors and Bioelectronics: X. Unidade: IFSC

    Subjects: RNA, SENSOR, VÍRUS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PARASSOL, Brenda Garcia et al. Biosensors for amplification-free viral RNA detection. Biosensors and Bioelectronics: X, v. 18, p. 100478-1-100478-16, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.biosx.2024.100478. Acesso em: 17 nov. 2024.
    • APA

      Parassol, B. G., Takeuti, N. N. K., Faria, H. A. M., Jorge, K. C., Nascimento, I. S. do, Zucolotto, V., & Vieira, N. C. S. (2024). Biosensors for amplification-free viral RNA detection. Biosensors and Bioelectronics: X, 18, 100478-1-100478-16. doi:10.1016/j.biosx.2024.100478
    • NLM

      Parassol BG, Takeuti NNK, Faria HAM, Jorge KC, Nascimento IS do, Zucolotto V, Vieira NCS. Biosensors for amplification-free viral RNA detection [Internet]. Biosensors and Bioelectronics: X. 2024 ; 18 100478-1-100478-16.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.biosx.2024.100478
    • Vancouver

      Parassol BG, Takeuti NNK, Faria HAM, Jorge KC, Nascimento IS do, Zucolotto V, Vieira NCS. Biosensors for amplification-free viral RNA detection [Internet]. Biosensors and Bioelectronics: X. 2024 ; 18 100478-1-100478-16.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.biosx.2024.100478
  • Source: Aquatic Toxicology. Unidade: IFSC

    Subjects: ECOTOXICOLOGIA, TOXICOLOGIA AMBIENTAL, PEIXES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIQUEIRA, Priscila Rodrigues de et al. rGO outperforms GO in generating oxidative stress and DNA strand breaks in zebrafish liver cells. Aquatic Toxicology, v. 262, p. 106640-1-106640-10, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.aquatox.2023.106640. Acesso em: 17 nov. 2024.
    • APA

      Siqueira, P. R. de, Souza, J. P. de, Venturini, F. P., Carmo, T. L. L. do, Azevedo, V. C., Estevão, B. M., et al. (2023). rGO outperforms GO in generating oxidative stress and DNA strand breaks in zebrafish liver cells. Aquatic Toxicology, 262, 106640-1-106640-10. doi:10.1016/j.aquatox.2023.106640
    • NLM

      Siqueira PR de, Souza JP de, Venturini FP, Carmo TLL do, Azevedo VC, Estevão BM, Bonomo MM, Santos FA dos, Zucolotto V, Fernandes MN. rGO outperforms GO in generating oxidative stress and DNA strand breaks in zebrafish liver cells [Internet]. Aquatic Toxicology. 2023 ; 262 106640-1-106640-10.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.aquatox.2023.106640
    • Vancouver

      Siqueira PR de, Souza JP de, Venturini FP, Carmo TLL do, Azevedo VC, Estevão BM, Bonomo MM, Santos FA dos, Zucolotto V, Fernandes MN. rGO outperforms GO in generating oxidative stress and DNA strand breaks in zebrafish liver cells [Internet]. Aquatic Toxicology. 2023 ; 262 106640-1-106640-10.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.aquatox.2023.106640
  • Source: Talanta. Unidade: IFSC

    Subjects: MICOTOXINAS, CAFÉ, SENSORES QUÍMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Jairo Pinto de et al. Label-free electrochemical immunosensor for Ochratoxin a detection in coffee samples. Talanta, v. 260, p. 124586-1-124586-7 + supplementary data, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.talanta.2023.124586. Acesso em: 17 nov. 2024.
    • APA

      Oliveira, J. P. de, Burgos-Flórez, F., Nascimento, I. S. do, Villalba, P. J., & Zucolotto, V. (2023). Label-free electrochemical immunosensor for Ochratoxin a detection in coffee samples. Talanta, 260, 124586-1-124586-7 + supplementary data. doi:10.1016/j.talanta.2023.124586
    • NLM

      Oliveira JP de, Burgos-Flórez F, Nascimento IS do, Villalba PJ, Zucolotto V. Label-free electrochemical immunosensor for Ochratoxin a detection in coffee samples [Internet]. Talanta. 2023 ; 260 124586-1-124586-7 + supplementary data.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.talanta.2023.124586
    • Vancouver

      Oliveira JP de, Burgos-Flórez F, Nascimento IS do, Villalba PJ, Zucolotto V. Label-free electrochemical immunosensor for Ochratoxin a detection in coffee samples [Internet]. Talanta. 2023 ; 260 124586-1-124586-7 + supplementary data.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.talanta.2023.124586
  • Source: Smart nanomaterials for bioencapsulation. Unidades: IFSC, FFCLRP

    Subjects: NEOPLASIAS, NANOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Natália Noronha et al. Smart systems in bio-encapsulation for cancer therapy. Smart nanomaterials for bioencapsulation. Tradução . Amsterdam: Elsevier, 2023. . Disponível em: https://doi.org/10.1016/B978-0-323-91229-7.00015-5. Acesso em: 17 nov. 2024.
    • APA

      Ferreira, N. N., Bernardi, J. C., Cardoso, V. M. de O., Comparetti, E. J., Miranda, R. R., Ferreira, L. M. B., & Zucolotto, V. (2023). Smart systems in bio-encapsulation for cancer therapy. In Smart nanomaterials for bioencapsulation. Amsterdam: Elsevier. doi:10.1016/B978-0-323-91229-7.00015-5
    • NLM

      Ferreira NN, Bernardi JC, Cardoso VM de O, Comparetti EJ, Miranda RR, Ferreira LMB, Zucolotto V. Smart systems in bio-encapsulation for cancer therapy [Internet]. In: Smart nanomaterials for bioencapsulation. Amsterdam: Elsevier; 2023. [citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/B978-0-323-91229-7.00015-5
    • Vancouver

      Ferreira NN, Bernardi JC, Cardoso VM de O, Comparetti EJ, Miranda RR, Ferreira LMB, Zucolotto V. Smart systems in bio-encapsulation for cancer therapy [Internet]. In: Smart nanomaterials for bioencapsulation. Amsterdam: Elsevier; 2023. [citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/B978-0-323-91229-7.00015-5
  • Source: Photodiagnosis and Photodynamic Therapy. Unidades: IFSC, EESC

    Subjects: NANOPARTÍCULAS, TERAPIA FOTODINÂMICA, NEOPLASIAS HEPÁTICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESTEVÃO, Bianca Martins et al. Mesoporous silica nanoparticles incorporated with Ir(III) complexes: from photophysics to photodynamic therapy. Photodiagnosis and Photodynamic Therapy, v. 40, p. 103052-1-103052-9, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.pdpdt.2022.103052. Acesso em: 17 nov. 2024.
    • APA

      Estevão, B. M., Vilela, R. R. do C., Geremias, I. P., Zanoni, K. P. da S., de Camargo, A. S. S., & Zucolotto, V. (2022). Mesoporous silica nanoparticles incorporated with Ir(III) complexes: from photophysics to photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 40, 103052-1-103052-9. doi:10.1016/j.pdpdt.2022.103052
    • NLM

      Estevão BM, Vilela RR do C, Geremias IP, Zanoni KP da S, de Camargo ASS, Zucolotto V. Mesoporous silica nanoparticles incorporated with Ir(III) complexes: from photophysics to photodynamic therapy [Internet]. Photodiagnosis and Photodynamic Therapy. 2022 ; 40 103052-1-103052-9.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.pdpdt.2022.103052
    • Vancouver

      Estevão BM, Vilela RR do C, Geremias IP, Zanoni KP da S, de Camargo ASS, Zucolotto V. Mesoporous silica nanoparticles incorporated with Ir(III) complexes: from photophysics to photodynamic therapy [Internet]. Photodiagnosis and Photodynamic Therapy. 2022 ; 40 103052-1-103052-9.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.pdpdt.2022.103052
  • Source: Colloids and Surfaces B: Biointerfaces. Unidade: IFSC

    Subjects: PRATA, NANOPARTÍCULAS, NANOTECNOLOGIA, MEDICINA (APLICAÇÕES), NEOPLASIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRANDA, Renata Rank e NASCIMENTO, Isabella Sampaio do e ZUCOLOTTO, Valtencir. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids and Surfaces B: Biointerfaces, v. 210, p. 112254-1-112254-13, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.colsurfb.2021.112254. Acesso em: 17 nov. 2024.
    • APA

      Miranda, R. R., Nascimento, I. S. do, & Zucolotto, V. (2022). Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids and Surfaces B: Biointerfaces, 210, 112254-1-112254-13. doi:10.1016/j.colsurfb.2021.112254
    • NLM

      Miranda RR, Nascimento IS do, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis [Internet]. Colloids and Surfaces B: Biointerfaces. 2022 ; 210 112254-1-112254-13.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.colsurfb.2021.112254
    • Vancouver

      Miranda RR, Nascimento IS do, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis [Internet]. Colloids and Surfaces B: Biointerfaces. 2022 ; 210 112254-1-112254-13.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.colsurfb.2021.112254
  • Source: Chemical Engineering Journal. Unidade: IFSC

    Subjects: DATILOSCOPIA, NANOPARTÍCULAS, FOTOLUMINESCÊNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Thales Rafael et al. Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence. Chemical Engineering Journal, v. 443, p. 136443-1-136443-12 + supplementary data: 1-4, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cej.2022.136443. Acesso em: 17 nov. 2024.
    • APA

      Machado, T. R., Silva, J. S. da, Miranda, R. R., Zucolotto, V., Siu Li, M., Yuso, M. V. M. de, et al. (2022). Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence. Chemical Engineering Journal, 443, 136443-1-136443-12 + supplementary data: 1-4. doi:10.1016/j.cej.2022.136443
    • NLM

      Machado TR, Silva JS da, Miranda RR, Zucolotto V, Siu Li M, Yuso MVM de, Guerrero-Gonzalez JJ, Rosa ILV, Algarra M, Longo E. Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence [Internet]. Chemical Engineering Journal. 2022 ; 443 136443-1-136443-12 + supplementary data: 1-4.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.cej.2022.136443
    • Vancouver

      Machado TR, Silva JS da, Miranda RR, Zucolotto V, Siu Li M, Yuso MVM de, Guerrero-Gonzalez JJ, Rosa ILV, Algarra M, Longo E. Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence [Internet]. Chemical Engineering Journal. 2022 ; 443 136443-1-136443-12 + supplementary data: 1-4.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.cej.2022.136443
  • Source: Aquatic Toxicology. Unidade: IFSC

    Subjects: ECOTOXICOLOGIA, TOXICOLOGIA AMBIENTAL, PEIXES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIQUEIRA, Priscila Rodrigues et al. Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line. Aquatic Toxicology, v. 248, p. 106199-1-106199-10, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.aquatox.2022.106199. Acesso em: 17 nov. 2024.
    • APA

      Siqueira, P. R., Souza, J. P. de, Estevão, B. M., Altei, W. F., Carmo, T. L. L. do, Santos, F. A. dos, et al. (2022). Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line. Aquatic Toxicology, 248, 106199-1-106199-10. doi:10.1016/j.aquatox.2022.106199
    • NLM

      Siqueira PR, Souza JP de, Estevão BM, Altei WF, Carmo TLL do, Santos FA dos, Araújo HSS, Zucolotto V, Fernandes MN. Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line [Internet]. Aquatic Toxicology. 2022 ; 248 106199-1-106199-10.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.aquatox.2022.106199
    • Vancouver

      Siqueira PR, Souza JP de, Estevão BM, Altei WF, Carmo TLL do, Santos FA dos, Araújo HSS, Zucolotto V, Fernandes MN. Concentration- and time-dependence toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) nanosheets upon zebrafish liver cell line [Internet]. Aquatic Toxicology. 2022 ; 248 106199-1-106199-10.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.aquatox.2022.106199
  • Source: European Journal of Pharmaceutics and Biopharmaceutics. Unidade: IFSC

    Subjects: FILMES FINOS, POLÍMEROS (MATERIAIS), NANOPARTÍCULAS, OURO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LINS, Paula Maria Pincela et al. Comparing extracellular vesicles and cell membranes as biocompatible coatings for gold nanorods: implications for targeted theranostics. European Journal of Pharmaceutics and Biopharmaceutics, v. 176, p. 168-179, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.ejpb.2022.05.018. Acesso em: 17 nov. 2024.
    • APA

      Lins, P. M. P., Ribovski, L., Antonio, L. C., Altei, W. F., Araújo, H. S. S., Bernardi, J. C., & Zucolotto, V. (2022). Comparing extracellular vesicles and cell membranes as biocompatible coatings for gold nanorods: implications for targeted theranostics. European Journal of Pharmaceutics and Biopharmaceutics, 176, 168-179. doi:10.1016/j.ejpb.2022.05.018
    • NLM

      Lins PMP, Ribovski L, Antonio LC, Altei WF, Araújo HSS, Bernardi JC, Zucolotto V. Comparing extracellular vesicles and cell membranes as biocompatible coatings for gold nanorods: implications for targeted theranostics [Internet]. European Journal of Pharmaceutics and Biopharmaceutics. 2022 ; 176 168-179.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.ejpb.2022.05.018
    • Vancouver

      Lins PMP, Ribovski L, Antonio LC, Altei WF, Araújo HSS, Bernardi JC, Zucolotto V. Comparing extracellular vesicles and cell membranes as biocompatible coatings for gold nanorods: implications for targeted theranostics [Internet]. European Journal of Pharmaceutics and Biopharmaceutics. 2022 ; 176 168-179.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.ejpb.2022.05.018
  • Source: Biosensors and Bioelectronics. Unidade: IFSC

    Subjects: SENSOR, DENGUE, ZIKA VÍRUS, CORONAVIRUS, SENSORES BIOMÉDICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NASCIMENTO, Isabella Sampaio do et al. Electrochemical detection of Zika and Dengue infections using a single chip. Biosensors and Bioelectronics, v. No 2022, p. 114630-1-114630-6, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.bios.2022.114630. Acesso em: 17 nov. 2024.
    • APA

      Nascimento, I. S. do, Quatroni, F. D., Costa, J. N. Y., & Zucolotto, V. (2022). Electrochemical detection of Zika and Dengue infections using a single chip. Biosensors and Bioelectronics, No 2022, 114630-1-114630-6. doi:10.1016/j.bios.2022.114630
    • NLM

      Nascimento IS do, Quatroni FD, Costa JNY, Zucolotto V. Electrochemical detection of Zika and Dengue infections using a single chip [Internet]. Biosensors and Bioelectronics. 2022 ; No 2022 114630-1-114630-6.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.bios.2022.114630
    • Vancouver

      Nascimento IS do, Quatroni FD, Costa JNY, Zucolotto V. Electrochemical detection of Zika and Dengue infections using a single chip [Internet]. Biosensors and Bioelectronics. 2022 ; No 2022 114630-1-114630-6.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.bios.2022.114630
  • Source: Stimuli-Responsive Nanocarriers: Recent Advances in Tailor-Made Therapeutics. Unidade: IFSC

    Subjects: NANOTECNOLOGIA, MEDICINA (APLICAÇÕES), PLANEJAMENTO DE FÁRMACOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDOSO, Valéria Maria de Oliveira et al. Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems. Stimuli-Responsive Nanocarriers: Recent Advances in Tailor-Made Therapeutics. Tradução . Amsterdam: Elsevier, 2022. . Disponível em: https://doi.org/10.1016/B978-0-12-824456-2.00011-4. Acesso em: 17 nov. 2024.
    • APA

      Cardoso, V. M. de O., Ferreira, L. M. B., Comparetti, E. J., Nascimento, I. S. do, Ferreira, N. N., Miranda, R. R., & Zucolotto, V. (2022). Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems. In Stimuli-Responsive Nanocarriers: Recent Advances in Tailor-Made Therapeutics. Amsterdam: Elsevier. doi:10.1016/B978-0-12-824456-2.00011-4
    • NLM

      Cardoso VM de O, Ferreira LMB, Comparetti EJ, Nascimento IS do, Ferreira NN, Miranda RR, Zucolotto V. Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems [Internet]. In: Stimuli-Responsive Nanocarriers: Recent Advances in Tailor-Made Therapeutics. Amsterdam: Elsevier; 2022. [citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/B978-0-12-824456-2.00011-4
    • Vancouver

      Cardoso VM de O, Ferreira LMB, Comparetti EJ, Nascimento IS do, Ferreira NN, Miranda RR, Zucolotto V. Stimuli-responsive polymeric nanoparticles as controlled drug delivery systems [Internet]. In: Stimuli-Responsive Nanocarriers: Recent Advances in Tailor-Made Therapeutics. Amsterdam: Elsevier; 2022. [citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/B978-0-12-824456-2.00011-4
  • Source: Applied Surface Science. Unidade: IFSC

    Subjects: FILMES FINOS, POLÍMEROS (MATERIAIS), SENSORES BIOMÉDICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Fabrício Aparecido dos et al. The layer-by-layer assembly of reduced graphene oxide films and their application as solution-gated field-effect transistors. Applied Surface Science, v. 543, p. 148698-1-148698-8, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.apsusc.2020.148698. Acesso em: 17 nov. 2024.
    • APA

      Santos, F. A. dos, Vieira, N. C. S., Zambianco, N., Janegitz, B. C., & Zucolotto, V. (2021). The layer-by-layer assembly of reduced graphene oxide films and their application as solution-gated field-effect transistors. Applied Surface Science, 543, 148698-1-148698-8. doi:10.1016/j.apsusc.2020.148698
    • NLM

      Santos FA dos, Vieira NCS, Zambianco N, Janegitz BC, Zucolotto V. The layer-by-layer assembly of reduced graphene oxide films and their application as solution-gated field-effect transistors [Internet]. Applied Surface Science. 2021 ; 543 148698-1-148698-8.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.apsusc.2020.148698
    • Vancouver

      Santos FA dos, Vieira NCS, Zambianco N, Janegitz BC, Zucolotto V. The layer-by-layer assembly of reduced graphene oxide films and their application as solution-gated field-effect transistors [Internet]. Applied Surface Science. 2021 ; 543 148698-1-148698-8.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.apsusc.2020.148698
  • Source: Talanta. Unidade: IFSC

    Subjects: NEOPLASIAS, ÁCIDO FÓLICO, BIOMEDICINA, NANOTECNOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREIA, Abilene Rodrigues et al. Detecting cancer cells with a highly sensitive LbL-based biosensor. Talanta, v. 233, p. 122506-1-122506-7, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.talanta.2021.122506. Acesso em: 17 nov. 2024.
    • APA

      Correia, A. R., Sampaio, I., Comparetti, E. J., Vieira, N. C. S., & Zucolotto, V. (2021). Detecting cancer cells with a highly sensitive LbL-based biosensor. Talanta, 233, 122506-1-122506-7. doi:10.1016/j.talanta.2021.122506
    • NLM

      Correia AR, Sampaio I, Comparetti EJ, Vieira NCS, Zucolotto V. Detecting cancer cells with a highly sensitive LbL-based biosensor [Internet]. Talanta. 2021 ; 233 122506-1-122506-7.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.talanta.2021.122506
    • Vancouver

      Correia AR, Sampaio I, Comparetti EJ, Vieira NCS, Zucolotto V. Detecting cancer cells with a highly sensitive LbL-based biosensor [Internet]. Talanta. 2021 ; 233 122506-1-122506-7.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.talanta.2021.122506
  • Source: Materials Today Communications. Unidade: IFSC

    Subjects: FILMES FINOS, OURO, POLÍMEROS (MATERIAIS), NANOPARTÍCULAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERNARDI, Juliana Cancino et al. Difference in lipid cell composition and shaped-based gold nanoparticles induce distinguish pathways in Langmuir monolayers response. Materials Today Communications, v. 26, p. 101831-1-101831-9, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.mtcomm.2020.101831. Acesso em: 17 nov. 2024.
    • APA

      Bernardi, J. C., Lins, P. M. P., Marangoni, V. S., Faria, H. A. M., & Zucolotto, V. (2021). Difference in lipid cell composition and shaped-based gold nanoparticles induce distinguish pathways in Langmuir monolayers response. Materials Today Communications, 26, 101831-1-101831-9. doi:10.1016/j.mtcomm.2020.101831
    • NLM

      Bernardi JC, Lins PMP, Marangoni VS, Faria HAM, Zucolotto V. Difference in lipid cell composition and shaped-based gold nanoparticles induce distinguish pathways in Langmuir monolayers response [Internet]. Materials Today Communications. 2021 ; 26 101831-1-101831-9.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.mtcomm.2020.101831
    • Vancouver

      Bernardi JC, Lins PMP, Marangoni VS, Faria HAM, Zucolotto V. Difference in lipid cell composition and shaped-based gold nanoparticles induce distinguish pathways in Langmuir monolayers response [Internet]. Materials Today Communications. 2021 ; 26 101831-1-101831-9.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.mtcomm.2020.101831
  • Source: Bioelectrochemistry. Unidade: IFSC

    Subjects: NEOPLASIAS, ÁCIDO FÓLICO, NANOTECNOLOGIA, BIOMEDICINA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREIA, Abilene Rodrigues et al. Optimized PAH/Folic acid layer-by-layer films as an electrochemical biosensor for the detection of folate receptors. Bioelectrochemistry, v. 137, p. 107685-1-107685-8, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.bioelechem.2020.107685. Acesso em: 17 nov. 2024.
    • APA

      Correia, A. R., Sampaio, I., Comparetti, E. J., Vieira, N. C. S., & Zucolotto, V. (2021). Optimized PAH/Folic acid layer-by-layer films as an electrochemical biosensor for the detection of folate receptors. Bioelectrochemistry, 137, 107685-1-107685-8. doi:10.1016/j.bioelechem.2020.107685
    • NLM

      Correia AR, Sampaio I, Comparetti EJ, Vieira NCS, Zucolotto V. Optimized PAH/Folic acid layer-by-layer films as an electrochemical biosensor for the detection of folate receptors [Internet]. Bioelectrochemistry. 2021 ; 137 107685-1-107685-8.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.bioelechem.2020.107685
    • Vancouver

      Correia AR, Sampaio I, Comparetti EJ, Vieira NCS, Zucolotto V. Optimized PAH/Folic acid layer-by-layer films as an electrochemical biosensor for the detection of folate receptors [Internet]. Bioelectrochemistry. 2021 ; 137 107685-1-107685-8.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.bioelechem.2020.107685
  • Source: Materials Science and Engineering C. Unidade: IFSC

    Subjects: MATERIAIS NANOESTRUTURADOS, PRATA, BACTERICIDAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALLESTEROS, Camilo e CORREA, Daniel S. e ZUCOLOTTO, Valtencir. Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: slow release for antibacterial control. Materials Science and Engineering C, v. 107, p. 110334-1-110334-8, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.msec.2019.110334. Acesso em: 17 nov. 2024.
    • APA

      Ballesteros, C., Correa, D. S., & Zucolotto, V. (2020). Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: slow release for antibacterial control. Materials Science and Engineering C, 107, 110334-1-110334-8. doi:10.1016/j.msec.2019.110334
    • NLM

      Ballesteros C, Correa DS, Zucolotto V. Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: slow release for antibacterial control [Internet]. Materials Science and Engineering C. 2020 ; 107 110334-1-110334-8.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.msec.2019.110334
    • Vancouver

      Ballesteros C, Correa DS, Zucolotto V. Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: slow release for antibacterial control [Internet]. Materials Science and Engineering C. 2020 ; 107 110334-1-110334-8.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.msec.2019.110334
  • Source: Environmental Research. Unidade: IFSC

    Subjects: OURO, CITOTOXINAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NOGUEIRA, Patricia Franklin Mayrink e MARANGONI, Valeria Spolon e ZUCOLOTTO, Valtencir. The aspect ratio of gold nanorods as a cytotoxicity factor on Raphidocelis subcaptata. Environmental Research, v. 191, p. 110133-1-110133-7, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.envres.2020.110133. Acesso em: 17 nov. 2024.
    • APA

      Nogueira, P. F. M., Marangoni, V. S., & Zucolotto, V. (2020). The aspect ratio of gold nanorods as a cytotoxicity factor on Raphidocelis subcaptata. Environmental Research, 191, 110133-1-110133-7. doi:10.1016/j.envres.2020.110133
    • NLM

      Nogueira PFM, Marangoni VS, Zucolotto V. The aspect ratio of gold nanorods as a cytotoxicity factor on Raphidocelis subcaptata [Internet]. Environmental Research. 2020 ; 191 110133-1-110133-7.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.envres.2020.110133
    • Vancouver

      Nogueira PFM, Marangoni VS, Zucolotto V. The aspect ratio of gold nanorods as a cytotoxicity factor on Raphidocelis subcaptata [Internet]. Environmental Research. 2020 ; 191 110133-1-110133-7.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.envres.2020.110133
  • Source: Talanta. Unidades: IFSC, IQSC

    Subjects: DOENÇA DE ALZHEIMER, SENSORES BIOMÉDICOS, BIOMARCADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAZACA, Lais Canniatti et al. Applications of biosensors in Alzheimer's disease diagnosis. Talanta, v. 210, p. 120644-1-120644-12, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.talanta.2019.120644. Acesso em: 17 nov. 2024.
    • APA

      Brazaca, L. C., Sampaio, I., Zucolotto, V., & Janegitz, B. C. (2020). Applications of biosensors in Alzheimer's disease diagnosis. Talanta, 210, 120644-1-120644-12. doi:10.1016/j.talanta.2019.120644
    • NLM

      Brazaca LC, Sampaio I, Zucolotto V, Janegitz BC. Applications of biosensors in Alzheimer's disease diagnosis [Internet]. Talanta. 2020 ; 210 120644-1-120644-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.talanta.2019.120644
    • Vancouver

      Brazaca LC, Sampaio I, Zucolotto V, Janegitz BC. Applications of biosensors in Alzheimer's disease diagnosis [Internet]. Talanta. 2020 ; 210 120644-1-120644-12.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1016/j.talanta.2019.120644
  • Source: Fish Physiology and Biochemistry. Unidade: IFSC

    Subjects: NANOPARTÍCULAS, PEIXES, ENZIMAS, DESINTOXICAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Jaqueline Pérola de et al. Antioxidant metabolism of zebrafish after sub-lethal exposure to graphene oxide and recovery. Fish Physiology and Biochemistry, v. 45, n. 4, p. 1289-1297, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10695-019-00678-7. Acesso em: 17 nov. 2024.
    • APA

      Souza, J. P. de, Mansano, A. da S., Venturini, F. P., Santos, F. A. dos, & Zucolotto, V. (2019). Antioxidant metabolism of zebrafish after sub-lethal exposure to graphene oxide and recovery. Fish Physiology and Biochemistry, 45( 4), 1289-1297. doi:10.1007/s10695-019-00678-7
    • NLM

      Souza JP de, Mansano A da S, Venturini FP, Santos FA dos, Zucolotto V. Antioxidant metabolism of zebrafish after sub-lethal exposure to graphene oxide and recovery [Internet]. Fish Physiology and Biochemistry. 2019 ; 45( 4): 1289-1297.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s10695-019-00678-7
    • Vancouver

      Souza JP de, Mansano A da S, Venturini FP, Santos FA dos, Zucolotto V. Antioxidant metabolism of zebrafish after sub-lethal exposure to graphene oxide and recovery [Internet]. Fish Physiology and Biochemistry. 2019 ; 45( 4): 1289-1297.[citado 2024 nov. 17 ] Available from: https://doi.org/10.1007/s10695-019-00678-7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024