Filtros : "truncation" Limpar

Filtros



Refine with date range


  • Source: Entropy. Unidade: IME

    Subjects: VEROSSIMILHANÇA, ENTROPIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTILLO, Nabor O et al. Truncated power-normal distribution with application to non-negative measurements. Entropy, v. 20, n. 6, p. 433, 2018Tradução . . Disponível em: https://doi.org/10.3390/e20060433. Acesso em: 24 jan. 2026.
    • APA

      Castillo, N. O., Gallardo, D., Bolfarine, H., & Gomez, H. (2018). Truncated power-normal distribution with application to non-negative measurements. Entropy, 20( 6), 433. doi:10.3390/e20060433
    • NLM

      Castillo NO, Gallardo D, Bolfarine H, Gomez H. Truncated power-normal distribution with application to non-negative measurements [Internet]. Entropy. 2018 ; 20( 6): 433.[citado 2026 jan. 24 ] Available from: https://doi.org/10.3390/e20060433
    • Vancouver

      Castillo NO, Gallardo D, Bolfarine H, Gomez H. Truncated power-normal distribution with application to non-negative measurements [Internet]. Entropy. 2018 ; 20( 6): 433.[citado 2026 jan. 24 ] Available from: https://doi.org/10.3390/e20060433
  • Source: Applied Mathematics - A Journal of Chinese Universities. Unidade: IME

    Assunto: ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GÓMEZ, Héctor J. et al. Inference for a truncated positive normal distribution. Applied Mathematics - A Journal of Chinese Universities, v. 33, n. 2, p. 163-176, 2018Tradução . . Disponível em: https://doi.org/10.1007/s11766-018-3354-x. Acesso em: 24 jan. 2026.
    • APA

      Gómez, H. J., Olmos, N. M., Varela, H., & Bolfarine, H. (2018). Inference for a truncated positive normal distribution. Applied Mathematics - A Journal of Chinese Universities, 33( 2), 163-176. doi:10.1007/s11766-018-3354-x
    • NLM

      Gómez HJ, Olmos NM, Varela H, Bolfarine H. Inference for a truncated positive normal distribution [Internet]. Applied Mathematics - A Journal of Chinese Universities. 2018 ; 33( 2): 163-176.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s11766-018-3354-x
    • Vancouver

      Gómez HJ, Olmos NM, Varela H, Bolfarine H. Inference for a truncated positive normal distribution [Internet]. Applied Mathematics - A Journal of Chinese Universities. 2018 ; 33( 2): 163-176.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1007/s11766-018-3354-x
  • Source: Journal of Applied Statistics. Unidade: ICMC

    Subjects: INFERÊNCIA BAYESIANA, ESTATÍSTICA, ESTATÍSTICA APLICADA, INFERÊNCIA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOUZADA, Francisco e FERREIRA, P. H. Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model. Journal of Applied Statistics, v. 43, n. 16, p. 2956-2976, 2016Tradução . . Disponível em: https://doi.org/10.1080/02664763.2016.1155204. Acesso em: 24 jan. 2026.
    • APA

      Louzada, F., & Ferreira, P. H. (2016). Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model. Journal of Applied Statistics, 43( 16), 2956-2976. doi:10.1080/02664763.2016.1155204
    • NLM

      Louzada F, Ferreira PH. Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model [Internet]. Journal of Applied Statistics. 2016 ; 43( 16): 2956-2976.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1080/02664763.2016.1155204
    • Vancouver

      Louzada F, Ferreira PH. Modified inference function for margins for the bivariate clayton copula-based SUN Tobit Model [Internet]. Journal of Applied Statistics. 2016 ; 43( 16): 2956-2976.[citado 2026 jan. 24 ] Available from: https://doi.org/10.1080/02664763.2016.1155204

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026