Filtros : "special groups" Limpar

Filtros



Refine with date range


  • Source: Mathematics. Unidade: IME

    Assunto: TEORIA DOS NÚMEROS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROBERTO, Kaique Matias de Andrade e MARIANO, Hugo Luiz. Marshall’s quotient and the Arason–Pfister Hauptsatz for reduced special groups. Mathematics, v. 13, n. artigo 3060, p. 1-15, 2025Tradução . . Disponível em: https://doi.org/10.3390/math13193060. Acesso em: 04 jan. 2026.
    • APA

      Roberto, K. M. de A., & Mariano, H. L. (2025). Marshall’s quotient and the Arason–Pfister Hauptsatz for reduced special groups. Mathematics, 13( artigo 3060), 1-15. doi:10.3390/math13193060
    • NLM

      Roberto KM de A, Mariano HL. Marshall’s quotient and the Arason–Pfister Hauptsatz for reduced special groups [Internet]. Mathematics. 2025 ; 13( artigo 3060): 1-15.[citado 2026 jan. 04 ] Available from: https://doi.org/10.3390/math13193060
    • Vancouver

      Roberto KM de A, Mariano HL. Marshall’s quotient and the Arason–Pfister Hauptsatz for reduced special groups [Internet]. Mathematics. 2025 ; 13( artigo 3060): 1-15.[citado 2026 jan. 04 ] Available from: https://doi.org/10.3390/math13193060
  • Source: Categories and General Algebraic Structures with Applications. Unidade: IME

    Assunto: TEORIA DOS NÚMEROS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROBERTO, Kaique Matias de Andrade e RIBEIRO, Hugo Rafael de Oliveira e MARIANO, Hugo Luiz. Quadratic structures associated to (multi)rings. Categories and General Algebraic Structures with Applications, v. 16, n. 1, p. 105-141, 2022Tradução . . Disponível em: https://doi.org/10.52547/CGASA.2021.101430. Acesso em: 04 jan. 2026.
    • APA

      Roberto, K. M. de A., Ribeiro, H. R. de O., & Mariano, H. L. (2022). Quadratic structures associated to (multi)rings. Categories and General Algebraic Structures with Applications, 16( 1), 105-141. doi:10.52547/CGASA.2021.101430
    • NLM

      Roberto KM de A, Ribeiro HR de O, Mariano HL. Quadratic structures associated to (multi)rings [Internet]. Categories and General Algebraic Structures with Applications. 2022 ; 16( 1): 105-141.[citado 2026 jan. 04 ] Available from: https://doi.org/10.52547/CGASA.2021.101430
    • Vancouver

      Roberto KM de A, Ribeiro HR de O, Mariano HL. Quadratic structures associated to (multi)rings [Internet]. Categories and General Algebraic Structures with Applications. 2022 ; 16( 1): 105-141.[citado 2026 jan. 04 ] Available from: https://doi.org/10.52547/CGASA.2021.101430
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: GRUPOS ALGÉBRICOS LINEARES, NÚMEROS ALGÉBRICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBEIRO, Hugo Rafael de Oliveira e ROBERTO, Kaique Matias de Andrade e MARIANO, Hugo Luiz. Functorial relationships between multirings and the various abstract theories of quadratic forms. São Paulo Journal of Mathematical Sciences, v. 16, n. 1, p. 5-42, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-020-00185-1. Acesso em: 04 jan. 2026.
    • APA

      Ribeiro, H. R. de O., Roberto, K. M. de A., & Mariano, H. L. (2022). Functorial relationships between multirings and the various abstract theories of quadratic forms. São Paulo Journal of Mathematical Sciences, 16( 1), 5-42. doi:10.1007/s40863-020-00185-1
    • NLM

      Ribeiro HR de O, Roberto KM de A, Mariano HL. Functorial relationships between multirings and the various abstract theories of quadratic forms [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 5-42.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1007/s40863-020-00185-1
    • Vancouver

      Ribeiro HR de O, Roberto KM de A, Mariano HL. Functorial relationships between multirings and the various abstract theories of quadratic forms [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 5-42.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1007/s40863-020-00185-1
  • Source: Categories and General Algebraic Structures with Applications. Unidade: IME

    Subjects: TEORIA DOS NÚMEROS, FORMAS QUADRÁTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROBERTO, Kaique Matias de Andrade e MARIANO, Hugo Luiz. K-theories and free inductive graded rings in abstract quadratic forms theories. Categories and General Algebraic Structures with Applications, v. 17, n. 1, p. 1-46, 2022Tradução . . Disponível em: https://doi.org/10.52547/CGASA.2021.101755. Acesso em: 04 jan. 2026.
    • APA

      Roberto, K. M. de A., & Mariano, H. L. (2022). K-theories and free inductive graded rings in abstract quadratic forms theories. Categories and General Algebraic Structures with Applications, 17( 1), 1-46. doi:10.52547/CGASA.2021.101755
    • NLM

      Roberto KM de A, Mariano HL. K-theories and free inductive graded rings in abstract quadratic forms theories [Internet]. Categories and General Algebraic Structures with Applications. 2022 ; 17( 1): 1-46.[citado 2026 jan. 04 ] Available from: https://doi.org/10.52547/CGASA.2021.101755
    • Vancouver

      Roberto KM de A, Mariano HL. K-theories and free inductive graded rings in abstract quadratic forms theories [Internet]. Categories and General Algebraic Structures with Applications. 2022 ; 17( 1): 1-46.[citado 2026 jan. 04 ] Available from: https://doi.org/10.52547/CGASA.2021.101755
  • Source: South American Journal of Logic. Unidade: IME

    Subjects: FORMAS QUADRÁTICAS, ÁLGEBRAS DE BOOLE, LÓGICA MATEMÁTICA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARIANO, Hugo Luiz e MIRAGLIA NETO, Francisco. Model-theoretic applications of the profinite hull functor of special groups. South American Journal of Logic, v. 1, n. 1, p. 111-133, 2015Tradução . . Disponível em: http://www.sa-logic.org/sajl-v1-i1/04-Mariano-Miraglia-SAJL.pdf. Acesso em: 04 jan. 2026.
    • APA

      Mariano, H. L., & Miraglia Neto, F. (2015). Model-theoretic applications of the profinite hull functor of special groups. South American Journal of Logic, 1( 1), 111-133. Recuperado de http://www.sa-logic.org/sajl-v1-i1/04-Mariano-Miraglia-SAJL.pdf
    • NLM

      Mariano HL, Miraglia Neto F. Model-theoretic applications of the profinite hull functor of special groups [Internet]. South American Journal of Logic. 2015 ; 1( 1): 111-133.[citado 2026 jan. 04 ] Available from: http://www.sa-logic.org/sajl-v1-i1/04-Mariano-Miraglia-SAJL.pdf
    • Vancouver

      Mariano HL, Miraglia Neto F. Model-theoretic applications of the profinite hull functor of special groups [Internet]. South American Journal of Logic. 2015 ; 1( 1): 111-133.[citado 2026 jan. 04 ] Available from: http://www.sa-logic.org/sajl-v1-i1/04-Mariano-Miraglia-SAJL.pdf
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: TEORIA DOS MODELOS, NÚMEROS ALGÉBRICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASTIER, Vincent e MARIANO, Hugo Luiz. Realizing profinite reduced special groups. Pacific Journal of Mathematics, v. 250, n. 2, p. 257-285, 2011Tradução . . Disponível em: https://doi.org/10.2140/pjm.2011.250.257. Acesso em: 04 jan. 2026.
    • APA

      Astier, V., & Mariano, H. L. (2011). Realizing profinite reduced special groups. Pacific Journal of Mathematics, 250( 2), 257-285. doi:10.2140/pjm.2011.250.257
    • NLM

      Astier V, Mariano HL. Realizing profinite reduced special groups [Internet]. Pacific Journal of Mathematics. 2011 ; 250( 2): 257-285.[citado 2026 jan. 04 ] Available from: https://doi.org/10.2140/pjm.2011.250.257
    • Vancouver

      Astier V, Mariano HL. Realizing profinite reduced special groups [Internet]. Pacific Journal of Mathematics. 2011 ; 250( 2): 257-285.[citado 2026 jan. 04 ] Available from: https://doi.org/10.2140/pjm.2011.250.257
  • Source: Journal of Algebra. Unidade: IME

    Assunto: K-TEORIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DICKMANN, Maximo Alejandro e MIRAGLIA NETO, Francisco. Quadratic form theory over preordered von Neumann-regular rings. Journal of Algebra, v. 319, n. 4, p. 1696-1732, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2007.02.050. Acesso em: 04 jan. 2026.
    • APA

      Dickmann, M. A., & Miraglia Neto, F. (2008). Quadratic form theory over preordered von Neumann-regular rings. Journal of Algebra, 319( 4), 1696-1732. doi:10.1016/j.jalgebra.2007.02.050
    • NLM

      Dickmann MA, Miraglia Neto F. Quadratic form theory over preordered von Neumann-regular rings [Internet]. Journal of Algebra. 2008 ; 319( 4): 1696-1732.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.jalgebra.2007.02.050
    • Vancouver

      Dickmann MA, Miraglia Neto F. Quadratic form theory over preordered von Neumann-regular rings [Internet]. Journal of Algebra. 2008 ; 319( 4): 1696-1732.[citado 2026 jan. 04 ] Available from: https://doi.org/10.1016/j.jalgebra.2007.02.050

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026