Filtros : "second-order optimality conditions" Limpar

Filtros



Refine with date range


  • Source: Linear and Multilinear Algebra. Unidade: IME

    Subjects: MATRIZES, ESPAÇOS VETORIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMARGO, André Pierro de e HAESER, Gabriel. A note on linearly dependent symmetric matrices. Linear and Multilinear Algebra, v. 69, n. 13, p. 2539-2545, 2021Tradução . . Disponível em: https://doi.org/10.1080/03081087.2019.1682495. Acesso em: 09 fev. 2026.
    • APA

      Camargo, A. P. de, & Haeser, G. (2021). A note on linearly dependent symmetric matrices. Linear and Multilinear Algebra, 69( 13), 2539-2545. doi:10.1080/03081087.2019.1682495
    • NLM

      Camargo AP de, Haeser G. A note on linearly dependent symmetric matrices [Internet]. Linear and Multilinear Algebra. 2021 ; 69( 13): 2539-2545.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1080/03081087.2019.1682495
    • Vancouver

      Camargo AP de, Haeser G. A note on linearly dependent symmetric matrices [Internet]. Linear and Multilinear Algebra. 2021 ; 69( 13): 2539-2545.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1080/03081087.2019.1682495
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, v. 70, n. 2, p. 615–639, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-018-0005-3. Acesso em: 09 fev. 2026.
    • APA

      Haeser, G. (2018). A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, 70( 2), 615–639. doi:10.1007/s10589-018-0005-3
    • NLM

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
    • Vancouver

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
  • Source: Operations Research Letters. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. Some theoretical limitations of second-order algorithms for smooth constrained optimization. Operations Research Letters, v. 46, n. 3, p. 295-299, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.orl.2018.02.007. Acesso em: 09 fev. 2026.
    • APA

      Haeser, G. (2018). Some theoretical limitations of second-order algorithms for smooth constrained optimization. Operations Research Letters, 46( 3), 295-299. doi:10.1016/j.orl.2018.02.007
    • NLM

      Haeser G. Some theoretical limitations of second-order algorithms for smooth constrained optimization [Internet]. Operations Research Letters. 2018 ; 46( 3): 295-299.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.orl.2018.02.007
    • Vancouver

      Haeser G. Some theoretical limitations of second-order algorithms for smooth constrained optimization [Internet]. Operations Research Letters. 2018 ; 46( 3): 295-299.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1016/j.orl.2018.02.007

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026