Filtros : "rotation sets" Limpar

Filtros



Refine with date range


  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALOMÃO, Guilherme Silva e TAL, Fábio Armando. Non-existence of sublinear diffusion for a class of torus homeomorphisms. Ergodic Theory and Dynamical Systems, v. 42 , n. 4 , p. 1517-1547, 2022Tradução . . Disponível em: https://doi.org/10.1017/etds.2020.137. Acesso em: 29 jan. 2026.
    • APA

      Salomão, G. S., & Tal, F. A. (2022). Non-existence of sublinear diffusion for a class of torus homeomorphisms. Ergodic Theory and Dynamical Systems, 42 ( 4 ), 1517-1547. doi:10.1017/etds.2020.137
    • NLM

      Salomão GS, Tal FA. Non-existence of sublinear diffusion for a class of torus homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2022 ; 42 ( 4 ): 1517-1547.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1017/etds.2020.137
    • Vancouver

      Salomão GS, Tal FA. Non-existence of sublinear diffusion for a class of torus homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2022 ; 42 ( 4 ): 1517-1547.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1017/etds.2020.137
  • Source: Nonlinearity. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZANATA, Salvador Addas e LIU, Xiao-Chuan. On stable and unstable behaviour of certain rotation segments. Nonlinearity, v. 35, n. 11, p. 5813-5851, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac8f0d. Acesso em: 29 jan. 2026.
    • APA

      Zanata, S. A., & Liu, X. -C. (2022). On stable and unstable behaviour of certain rotation segments. Nonlinearity, 35( 11), 5813-5851. doi:10.1088/1361-6544/ac8f0d
    • NLM

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d
    • Vancouver

      Zanata SA, Liu X-C. On stable and unstable behaviour of certain rotation segments [Internet]. Nonlinearity. 2022 ; 35( 11): 5813-5851.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1088/1361-6544/ac8f0d
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador e JACOIA, Bruno de Paula. A condition that implies full homotopical complexity of orbits for surface homeomorphisms. Ergodic Theory and Dynamical Systems, v. 41 , n. 1, p. 1 - 47, 2021Tradução . . Disponível em: https://doi.org/10.1017/etds.2019.62. Acesso em: 29 jan. 2026.
    • APA

      Addas-Zanata, S., & Jacoia, B. de P. (2021). A condition that implies full homotopical complexity of orbits for surface homeomorphisms. Ergodic Theory and Dynamical Systems, 41 ( 1), 1 - 47. doi:10.1017/etds.2019.62
    • NLM

      Addas-Zanata S, Jacoia B de P. A condition that implies full homotopical complexity of orbits for surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2021 ; 41 ( 1): 1 - 47.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1017/etds.2019.62
    • Vancouver

      Addas-Zanata S, Jacoia B de P. A condition that implies full homotopical complexity of orbits for surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2021 ; 41 ( 1): 1 - 47.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1017/etds.2019.62

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026