Filtros : "renormalization" Limpar

Filtros



Refine with date range


  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CLARK, Trevor e FARIA, Edson de e STRIEN, Sebastian van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps. Ergodic Theory and Dynamical Systems, v. 43, n. 11, p. 3636-3684, 2023Tradução . . Disponível em: https://doi.org/10.1017/etds.2022.72. Acesso em: 03 jan. 2026.
    • APA

      Clark, T., Faria, E. de, & Strien, S. van. (2023). Asymptotically holomorphic methods for infinitely renormalizable unimodal maps. Ergodic Theory and Dynamical Systems, 43( 11), 3636-3684. doi:10.1017/etds.2022.72
    • NLM

      Clark T, Faria E de, Strien S van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps [Internet]. Ergodic Theory and Dynamical Systems. 2023 ; 43( 11): 3636-3684.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1017/etds.2022.72
    • Vancouver

      Clark T, Faria E de, Strien S van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps [Internet]. Ergodic Theory and Dynamical Systems. 2023 ; 43( 11): 3636-3684.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1017/etds.2022.72
  • Source: Annals of Mathematics. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SMANIA, Daniel. Solenoidal attractors with bounded combinatorics are shy. Annals of Mathematics, v. 191, n. Ja 2020, p. 1-79, 2020Tradução . . Disponível em: https://doi.org/10.4007/annals.2020.191.1.1. Acesso em: 03 jan. 2026.
    • APA

      Smania, D. (2020). Solenoidal attractors with bounded combinatorics are shy. Annals of Mathematics, 191( Ja 2020), 1-79. doi:10.4007/annals.2020.191.1.1
    • NLM

      Smania D. Solenoidal attractors with bounded combinatorics are shy [Internet]. Annals of Mathematics. 2020 ; 191( Ja 2020): 1-79.[citado 2026 jan. 03 ] Available from: https://doi.org/10.4007/annals.2020.191.1.1
    • Vancouver

      Smania D. Solenoidal attractors with bounded combinatorics are shy [Internet]. Annals of Mathematics. 2020 ; 191( Ja 2020): 1-79.[citado 2026 jan. 03 ] Available from: https://doi.org/10.4007/annals.2020.191.1.1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026