Filtros : "reliability function" Limpar

Filtros



Refine with date range


  • Source: Revista Brasileira de Biometria. Unidade: ICMC

    Subjects: VEROSSIMILHANÇA, PROBLEMAS DOS MOMENTOS, TEORIA DA CONFIABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOUZADA, Francisco e ELBATAL, Ibrahim e GRANZOTTO, Daniele Cristina Tita Granzotto. The beta exponentiated Weibull geometric distribution: modeling, structural properties, estimation and an application to a cervical intraepithelial neoplasia dataset. Revista Brasileira de Biometria, v. 36, n. 4, p. 942-967, 2018Tradução . . Disponível em: https://doi.org/10.28951/rbb.v36i4.329. Acesso em: 19 jan. 2026.
    • APA

      Louzada, F., Elbatal, I., & Granzotto, D. C. T. G. (2018). The beta exponentiated Weibull geometric distribution: modeling, structural properties, estimation and an application to a cervical intraepithelial neoplasia dataset. Revista Brasileira de Biometria, 36( 4), 942-967. doi:10.28951/rbb.v36i4.329
    • NLM

      Louzada F, Elbatal I, Granzotto DCTG. The beta exponentiated Weibull geometric distribution: modeling, structural properties, estimation and an application to a cervical intraepithelial neoplasia dataset [Internet]. Revista Brasileira de Biometria. 2018 ; 36( 4): 942-967.[citado 2026 jan. 19 ] Available from: https://doi.org/10.28951/rbb.v36i4.329
    • Vancouver

      Louzada F, Elbatal I, Granzotto DCTG. The beta exponentiated Weibull geometric distribution: modeling, structural properties, estimation and an application to a cervical intraepithelial neoplasia dataset [Internet]. Revista Brasileira de Biometria. 2018 ; 36( 4): 942-967.[citado 2026 jan. 19 ] Available from: https://doi.org/10.28951/rbb.v36i4.329
  • Source: Reliability: Theory and Applications. Unidade: IME

    Subjects: TEORIA DA CONFIABILIDADE, TRANSFORMADA DE LAPLACE

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOZYREV, Dmitry e RYKOV, Vladimir e KOLEV, Nikolai. Reliability function of renewable system under Marshall-Olkin failure model. Reliability: Theory and Applications, v. 13, n. 1 (48), p. 39-46, 2018Tradução . . Disponível em: https://doi.org/10.24411/1932-2321-2018-00004. Acesso em: 19 jan. 2026.
    • APA

      Kozyrev, D., Rykov, V., & Kolev, N. (2018). Reliability function of renewable system under Marshall-Olkin failure model. Reliability: Theory and Applications, 13( 1 (48), 39-46. doi:10.24411/1932-2321-2018-00004
    • NLM

      Kozyrev D, Rykov V, Kolev N. Reliability function of renewable system under Marshall-Olkin failure model [Internet]. Reliability: Theory and Applications. 2018 ; 13( 1 (48): 39-46.[citado 2026 jan. 19 ] Available from: https://doi.org/10.24411/1932-2321-2018-00004
    • Vancouver

      Kozyrev D, Rykov V, Kolev N. Reliability function of renewable system under Marshall-Olkin failure model [Internet]. Reliability: Theory and Applications. 2018 ; 13( 1 (48): 39-46.[citado 2026 jan. 19 ] Available from: https://doi.org/10.24411/1932-2321-2018-00004

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026