Filtros : "quiver" Limpar

Filtros



Refine with date range


  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COHOMOLOGIA, TEORIA DAS CATEGORIAS, ÁLGEBRA HOMOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, v. 307, n. 1, p. 63-77, 2020Tradução . . Disponível em: https://doi.org/10.2140/pjm.2020.307.63. Acesso em: 05 jan. 2026.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, 307( 1), 63-77. doi:10.2140/pjm.2020.307.63
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2026 jan. 05 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2026 jan. 05 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, v. 148, n. 6, p. 2421-2432, 2020Tradução . . Disponível em: https://doi.org/10.1090/proc/14936. Acesso em: 05 jan. 2026.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology. Proceedings of the American Mathematical Society, 148( 6), 2421-2432. doi:10.1090/proc/14936
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1090/proc/14936
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Deleting or adding arrows of a bound quiver algebra and Hochschild (co)homology [Internet]. Proceedings of the American Mathematical Society. 2020 ; 148( 6): 2421-2432.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1090/proc/14936
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Subjects: COHOMOLOGIA, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, v. 307, n. 1, p. 63-77, 2020Tradução . . Disponível em: https://doi.org/10.2140/pjm.2020.307.63. Acesso em: 05 jan. 2026.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2020). Split bounded extension algebras and Han’sconjecture. Pacific Journal of Mathematics, 307( 1), 63-77. doi:10.2140/pjm.2020.307.63
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2026 jan. 05 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Split bounded extension algebras and Han’sconjecture [Internet]. Pacific Journal of Mathematics. 2020 ; 307( 1): 63-77.[citado 2026 jan. 05 ] Available from: https://doi.org/10.2140/pjm.2020.307.63
  • Source: Journal of Noncommutative Geometry. Unidade: IME

    Subjects: ÁLGEBRA HOMOLÓGICA, COHOMOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Hochschild cohomology of algebras arising from categories and from bounded quivers. Journal of Noncommutative Geometry, v. 13, n. 3, p. 1011-1053, 2019Tradução . . Disponível em: https://doi.org/10.4171/JNCG/344. Acesso em: 05 jan. 2026.
    • APA

      Cibils, C., Solotar, A., Marcos, E. do N., & Lanzilotta, M. (2019). Hochschild cohomology of algebras arising from categories and from bounded quivers. Journal of Noncommutative Geometry, 13( 3), 1011-1053. doi:10.4171/JNCG/344
    • NLM

      Cibils C, Solotar A, Marcos E do N, Lanzilotta M. Hochschild cohomology of algebras arising from categories and from bounded quivers [Internet]. Journal of Noncommutative Geometry. 2019 ; 13( 3): 1011-1053.[citado 2026 jan. 05 ] Available from: https://doi.org/10.4171/JNCG/344
    • Vancouver

      Cibils C, Solotar A, Marcos E do N, Lanzilotta M. Hochschild cohomology of algebras arising from categories and from bounded quivers [Internet]. Journal of Noncommutative Geometry. 2019 ; 13( 3): 1011-1053.[citado 2026 jan. 05 ] Available from: https://doi.org/10.4171/JNCG/344
  • Source: Algebra and Discrete Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHERNOUSOVA, Zhana T et al. Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II. Algebra and Discrete Mathematics, v. 2, n. 2, p. 47-86, 2003Tradução . . Disponível em: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/958. Acesso em: 05 jan. 2026.
    • APA

      Chernousova, Z. T., Kirichenko, V. V., Miroshnichenko, S. G., Zhuravlev, V. N., & Dokuchaev, M. (2003). Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II. Algebra and Discrete Mathematics, 2( 2), 47-86. Recuperado de http://admjournal.luguniv.edu.ua/index.php/adm/article/view/958
    • NLM

      Chernousova ZT, Kirichenko VV, Miroshnichenko SG, Zhuravlev VN, Dokuchaev M. Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II [Internet]. Algebra and Discrete Mathematics. 2003 ; 2( 2): 47-86.[citado 2026 jan. 05 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/958
    • Vancouver

      Chernousova ZT, Kirichenko VV, Miroshnichenko SG, Zhuravlev VN, Dokuchaev M. Tiled orders over discrete valuation rings, finite Markov chains and partially ordered sets. II [Internet]. Algebra and Discrete Mathematics. 2003 ; 2( 2): 47-86.[citado 2026 jan. 05 ] Available from: http://admjournal.luguniv.edu.ua/index.php/adm/article/view/958

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026