Filtros : "quasi-isometry" Limpar


  • Source: Proceedings of the American Mathematical Society. Unidades: IME, ICMC

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e SILVA, André Luis Porto da. A wider nonlinear extension of Banach-Stone theorem to 𝐶₀(𝐾,𝑋) spaces which is optimal for 𝑋=ℓp, 2 ≤ p < ∞. Proceedings of the American Mathematical Society, v. 150, p. 3011-3023, 2022Tradução . . Disponível em: https://doi.org/10.1090/proc/15903. Acesso em: 18 fev. 2026.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2022). A wider nonlinear extension of Banach-Stone theorem to 𝐶₀(𝐾,𝑋) spaces which is optimal for 𝑋=ℓp, 2 ≤ p < ∞. Proceedings of the American Mathematical Society, 150, 3011-3023. doi:10.1090/proc/15903
    • NLM

      Galego EM, Silva ALP da. A wider nonlinear extension of Banach-Stone theorem to 𝐶₀(𝐾,𝑋) spaces which is optimal for 𝑋=ℓp, 2 ≤ p < ∞ [Internet]. Proceedings of the American Mathematical Society. 2022 ; 150 3011-3023.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1090/proc/15903
    • Vancouver

      Galego EM, Silva ALP da. A wider nonlinear extension of Banach-Stone theorem to 𝐶₀(𝐾,𝑋) spaces which is optimal for 𝑋=ℓp, 2 ≤ p < ∞ [Internet]. Proceedings of the American Mathematical Society. 2022 ; 150 3011-3023.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1090/proc/15903
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e SILVA, André Luis Porto da. Quasi-isometries on subsets of C0(K) and C(1) 0 (K) spaces which determine K. Proceedings of the American Mathematical Society, v. 147, n. 8, p. 3455-3470, 2019Tradução . . Disponível em: https://doi.org/10.1090/proc/14498. Acesso em: 18 fev. 2026.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2019). Quasi-isometries on subsets of C0(K) and C(1) 0 (K) spaces which determine K. Proceedings of the American Mathematical Society, 147( 8), 3455-3470. doi:10.1090/proc/14498
    • NLM

      Galego EM, Silva ALP da. Quasi-isometries on subsets of C0(K) and C(1) 0 (K) spaces which determine K [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 8): 3455-3470.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1090/proc/14498
    • Vancouver

      Galego EM, Silva ALP da. Quasi-isometries on subsets of C0(K) and C(1) 0 (K) spaces which determine K [Internet]. Proceedings of the American Mathematical Society. 2019 ; 147( 8): 3455-3470.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1090/proc/14498
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e SILVA, André Luis Porto da. An Amir–Cambern theorem for quasi-isometries of C0(K,X) spaces. Pacific Journal of Mathematics, v. 297, n. 1, p. 87-100, 2018Tradução . . Disponível em: https://doi.org/10.2140/pjm.2018.297.87. Acesso em: 18 fev. 2026.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2018). An Amir–Cambern theorem for quasi-isometries of C0(K,X) spaces. Pacific Journal of Mathematics, 297( 1), 87-100. doi:10.2140/pjm.2018.297.87
    • NLM

      Galego EM, Silva ALP da. An Amir–Cambern theorem for quasi-isometries of C0(K,X) spaces [Internet]. Pacific Journal of Mathematics. 2018 ; 297( 1): 87-100.[citado 2026 fev. 18 ] Available from: https://doi.org/10.2140/pjm.2018.297.87
    • Vancouver

      Galego EM, Silva ALP da. An Amir–Cambern theorem for quasi-isometries of C0(K,X) spaces [Internet]. Pacific Journal of Mathematics. 2018 ; 297( 1): 87-100.[citado 2026 fev. 18 ] Available from: https://doi.org/10.2140/pjm.2018.297.87

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026