Filtros : "projection methods" Limpar

Filtros



Refine with date range


  • Source: Inverse Problems : An International Journal of Inverse Problems, Inverse Methods and Computerised Inversion of Data. Unidade: ICMC

    Subjects: OTIMIZAÇÃO, OTIMIZAÇÃO COMBINATÓRIA, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Rafael Massambone de e HELOU, Elias Salomão e COSTA, Eduardo Fontoura. String-averaging incremental subgradients for constrained convex optimization with applications to reconstruction of tomographic images. Inverse Problems : An International Journal of Inverse Problems, Inverse Methods and Computerised Inversion of Data, v. 32, n. 11, p. 115014-1-115014-29, 2016Tradução . . Disponível em: https://doi.org/10.1088/0266-5611/32/11/115014. Acesso em: 05 jan. 2026.
    • APA

      Oliveira, R. M. de, Helou, E. S., & Costa, E. F. (2016). String-averaging incremental subgradients for constrained convex optimization with applications to reconstruction of tomographic images. Inverse Problems : An International Journal of Inverse Problems, Inverse Methods and Computerised Inversion of Data, 32( 11), 115014-1-115014-29. doi:10.1088/0266-5611/32/11/115014
    • NLM

      Oliveira RM de, Helou ES, Costa EF. String-averaging incremental subgradients for constrained convex optimization with applications to reconstruction of tomographic images [Internet]. Inverse Problems : An International Journal of Inverse Problems, Inverse Methods and Computerised Inversion of Data. 2016 ; 32( 11): 115014-1-115014-29.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1088/0266-5611/32/11/115014
    • Vancouver

      Oliveira RM de, Helou ES, Costa EF. String-averaging incremental subgradients for constrained convex optimization with applications to reconstruction of tomographic images [Internet]. Inverse Problems : An International Journal of Inverse Problems, Inverse Methods and Computerised Inversion of Data. 2016 ; 32( 11): 115014-1-115014-29.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1088/0266-5611/32/11/115014
  • Source: Journal of Computational Physics. Unidade: IME

    Assunto: ANÁLISE NUMÉRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMA, Alexandre Megiorin e PESKIN, Charles S e BERGER, Marsha J. An adaptive version of the immersed boundary method. Journal of Computational Physics, v. 153, p. 509-534, 1999Tradução . . Disponível em: https://doi.org/10.1006/jcph.1999.6293. Acesso em: 05 jan. 2026.
    • APA

      Roma, A. M., Peskin, C. S., & Berger, M. J. (1999). An adaptive version of the immersed boundary method. Journal of Computational Physics, 153, 509-534. doi:10.1006/jcph.1999.6293
    • NLM

      Roma AM, Peskin CS, Berger MJ. An adaptive version of the immersed boundary method [Internet]. Journal of Computational Physics. 1999 ; 153 509-534.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1006/jcph.1999.6293
    • Vancouver

      Roma AM, Peskin CS, Berger MJ. An adaptive version of the immersed boundary method [Internet]. Journal of Computational Physics. 1999 ; 153 509-534.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1006/jcph.1999.6293

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026