Filtros : "network dynamics" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Mechanics. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, COMUNICAÇÃO, REDES DE INFORMAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINEDA, Aruane Mello et al. Machine learning-based prediction of Q-voter model in complex networks. Journal of Statistical Mechanics, v. 2023, p. 1-33, 2023Tradução . . Disponível em: https://doi.org/10.1088/1742-5468/ad06a6. Acesso em: 21 jan. 2026.
    • APA

      Pineda, A. M., Kent, P., Connaughton, C., & Rodrigues, F. A. (2023). Machine learning-based prediction of Q-voter model in complex networks. Journal of Statistical Mechanics, 2023, 1-33. doi:10.1088/1742-5468/ad06a6
    • NLM

      Pineda AM, Kent P, Connaughton C, Rodrigues FA. Machine learning-based prediction of Q-voter model in complex networks [Internet]. Journal of Statistical Mechanics. 2023 ; 2023 1-33.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1088/1742-5468/ad06a6
    • Vancouver

      Pineda AM, Kent P, Connaughton C, Rodrigues FA. Machine learning-based prediction of Q-voter model in complex networks [Internet]. Journal of Statistical Mechanics. 2023 ; 2023 1-33.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1088/1742-5468/ad06a6
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRACHT, Sören von der e NIJHOUT, Eddie e RINK, Bob. Amplified steady state bifurcations in feedforward networks. Nonlinearity, v. 35, n. 4, p. 2073-2120, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac5463. Acesso em: 21 jan. 2026.
    • APA

      Gracht, S. von der, Nijhout, E., & Rink, B. (2022). Amplified steady state bifurcations in feedforward networks. Nonlinearity, 35( 4), 2073-2120. doi:10.1088/1361-6544/ac5463
    • NLM

      Gracht S von der, Nijhout E, Rink B. Amplified steady state bifurcations in feedforward networks [Internet]. Nonlinearity. 2022 ; 35( 4): 2073-2120.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1088/1361-6544/ac5463
    • Vancouver

      Gracht S von der, Nijhout E, Rink B. Amplified steady state bifurcations in feedforward networks [Internet]. Nonlinearity. 2022 ; 35( 4): 2073-2120.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1088/1361-6544/ac5463
  • Source: SIAM Journal on Applied Dynamical Systems. Unidade: ICMC

    Subjects: REGULAÇÃO GÊNICA, BIOMATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUMMINS, Breschine et al. Extending combinatorial regulatory network modeling to include activity control and decay modulation. SIAM Journal on Applied Dynamical Systems, v. 21, n. 3, p. 2096-2125, 2022Tradução . . Disponível em: https://doi.org/10.1137/21M1456832. Acesso em: 21 jan. 2026.
    • APA

      Cummins, B., Gameiro, M. F., Gedeon, T., Kepley, S., Mischaikow, K., & Zhang, L. (2022). Extending combinatorial regulatory network modeling to include activity control and decay modulation. SIAM Journal on Applied Dynamical Systems, 21( 3), 2096-2125. doi:10.1137/21M1456832
    • NLM

      Cummins B, Gameiro MF, Gedeon T, Kepley S, Mischaikow K, Zhang L. Extending combinatorial regulatory network modeling to include activity control and decay modulation [Internet]. SIAM Journal on Applied Dynamical Systems. 2022 ; 21( 3): 2096-2125.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1137/21M1456832
    • Vancouver

      Cummins B, Gameiro MF, Gedeon T, Kepley S, Mischaikow K, Zhang L. Extending combinatorial regulatory network modeling to include activity control and decay modulation [Internet]. SIAM Journal on Applied Dynamical Systems. 2022 ; 21( 3): 2096-2125.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1137/21M1456832
  • Source: Journal of Statistical Mechanics: Theory and Experiment. Unidade: ICMC

    Subjects: TEORIA ESPECTRAL, MODELAGEM DE EPIDEMIA, REDES COMPLEXAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRUDA, Guilherme Ferraz de et al. Universality of eigenvector delocalization and the nature of the SIS phase transition in multiplex networks. Journal of Statistical Mechanics: Theory and Experiment, v. 2020, p. 1-10, 2020Tradução . . Disponível em: https://doi.org/10.1088/1742-5468/abbcd4. Acesso em: 21 jan. 2026.
    • APA

      Arruda, G. F. de, Méndez-Bermúdez, J. A., Rodrigues, F. A., & Moreno, Y. (2020). Universality of eigenvector delocalization and the nature of the SIS phase transition in multiplex networks. Journal of Statistical Mechanics: Theory and Experiment, 2020, 1-10. doi:10.1088/1742-5468/abbcd4
    • NLM

      Arruda GF de, Méndez-Bermúdez JA, Rodrigues FA, Moreno Y. Universality of eigenvector delocalization and the nature of the SIS phase transition in multiplex networks [Internet]. Journal of Statistical Mechanics: Theory and Experiment. 2020 ; 2020 1-10.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1088/1742-5468/abbcd4
    • Vancouver

      Arruda GF de, Méndez-Bermúdez JA, Rodrigues FA, Moreno Y. Universality of eigenvector delocalization and the nature of the SIS phase transition in multiplex networks [Internet]. Journal of Statistical Mechanics: Theory and Experiment. 2020 ; 2020 1-10.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1088/1742-5468/abbcd4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026