Filtros : "multirings" Limpar

Filtros



Refine with date range


  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: GRUPOS ALGÉBRICOS LINEARES, NÚMEROS ALGÉBRICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBEIRO, Hugo Rafael de Oliveira e ROBERTO, Kaique Matias de Andrade e MARIANO, Hugo Luiz. Functorial relationships between multirings and the various abstract theories of quadratic forms. São Paulo Journal of Mathematical Sciences, v. 16, n. 1, p. 5-42, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-020-00185-1. Acesso em: 27 jan. 2026.
    • APA

      Ribeiro, H. R. de O., Roberto, K. M. de A., & Mariano, H. L. (2022). Functorial relationships between multirings and the various abstract theories of quadratic forms. São Paulo Journal of Mathematical Sciences, 16( 1), 5-42. doi:10.1007/s40863-020-00185-1
    • NLM

      Ribeiro HR de O, Roberto KM de A, Mariano HL. Functorial relationships between multirings and the various abstract theories of quadratic forms [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 5-42.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1007/s40863-020-00185-1
    • Vancouver

      Ribeiro HR de O, Roberto KM de A, Mariano HL. Functorial relationships between multirings and the various abstract theories of quadratic forms [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 5-42.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1007/s40863-020-00185-1
  • Source: Categories and General Algebraic Structures with Applications. Unidade: IME

    Subjects: TEORIA DOS NÚMEROS, FORMAS QUADRÁTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROBERTO, Kaique Matias de Andrade e MARIANO, Hugo Luiz. K-theories and free inductive graded rings in abstract quadratic forms theories. Categories and General Algebraic Structures with Applications, v. 17, n. 1, p. 1-46, 2022Tradução . . Disponível em: https://doi.org/10.52547/CGASA.2021.101755. Acesso em: 27 jan. 2026.
    • APA

      Roberto, K. M. de A., & Mariano, H. L. (2022). K-theories and free inductive graded rings in abstract quadratic forms theories. Categories and General Algebraic Structures with Applications, 17( 1), 1-46. doi:10.52547/CGASA.2021.101755
    • NLM

      Roberto KM de A, Mariano HL. K-theories and free inductive graded rings in abstract quadratic forms theories [Internet]. Categories and General Algebraic Structures with Applications. 2022 ; 17( 1): 1-46.[citado 2026 jan. 27 ] Available from: https://doi.org/10.52547/CGASA.2021.101755
    • Vancouver

      Roberto KM de A, Mariano HL. K-theories and free inductive graded rings in abstract quadratic forms theories [Internet]. Categories and General Algebraic Structures with Applications. 2022 ; 17( 1): 1-46.[citado 2026 jan. 27 ] Available from: https://doi.org/10.52547/CGASA.2021.101755
  • Source: Categories and General Algebraic Structures with Applications. Unidade: IME

    Assunto: TEORIA DOS NÚMEROS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROBERTO, Kaique Matias de Andrade e RIBEIRO, Hugo Rafael de Oliveira e MARIANO, Hugo Luiz. Quadratic structures associated to (multi)rings. Categories and General Algebraic Structures with Applications, v. 16, n. 1, p. 105-141, 2022Tradução . . Disponível em: https://doi.org/10.52547/CGASA.2021.101430. Acesso em: 27 jan. 2026.
    • APA

      Roberto, K. M. de A., Ribeiro, H. R. de O., & Mariano, H. L. (2022). Quadratic structures associated to (multi)rings. Categories and General Algebraic Structures with Applications, 16( 1), 105-141. doi:10.52547/CGASA.2021.101430
    • NLM

      Roberto KM de A, Ribeiro HR de O, Mariano HL. Quadratic structures associated to (multi)rings [Internet]. Categories and General Algebraic Structures with Applications. 2022 ; 16( 1): 105-141.[citado 2026 jan. 27 ] Available from: https://doi.org/10.52547/CGASA.2021.101430
    • Vancouver

      Roberto KM de A, Ribeiro HR de O, Mariano HL. Quadratic structures associated to (multi)rings [Internet]. Categories and General Algebraic Structures with Applications. 2022 ; 16( 1): 105-141.[citado 2026 jan. 27 ] Available from: https://doi.org/10.52547/CGASA.2021.101430

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026