Filtros : "impulses" Limpar

Filtros



Refine with date range


  • Source: Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, TEORIA DA OSCILAÇÃO, INTEGRAL DE PERRON

    PrivadoAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Marielle Aparecida e FEDERSON, Marcia e GADOTTI, Marta Cilene. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis, v. 29, n. 2, p. 125-137, 2022Tradução . . Disponível em: https://online.watsci.org/contents2022/v29n2a.html. Acesso em: 22 fev. 2026.
    • APA

      Silva, M. A., Federson, M., & Gadotti, M. C. (2022). Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis, 29( 2), 125-137. Recuperado de https://online.watsci.org/contents2022/v29n2a.html
    • NLM

      Silva MA, Federson M, Gadotti MC. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients [Internet]. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis. 2022 ; 29( 2): 125-137.[citado 2026 fev. 22 ] Available from: https://online.watsci.org/contents2022/v29n2a.html
    • Vancouver

      Silva MA, Federson M, Gadotti MC. Oscillation and nonoscillation criteria for impulsive delay differential equations with Perron integrable coefficients [Internet]. Dynamics of Continuous, Discrete and Impulsive Systems : Series A : Mathematical Analysis. 2022 ; 29( 2): 125-137.[citado 2026 fev. 22 ] Available from: https://online.watsci.org/contents2022/v29n2a.html
  • Source: Proceedings of the Singapore National Academy of Science. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, INTEGRAÇÃO, INTEGRAL DE RIEMANN, INTEGRAL DE HENSTOCK

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e MULDOWNEY, P. The Black-Scholes equation with impulses at random times via generalized Riemann integral. Proceedings of the Singapore National Academy of Science, v. 15, n. 1, p. 45-59, 2021Tradução . . Disponível em: https://doi.org/10.1142/S2591722621400068. Acesso em: 22 fev. 2026.
    • APA

      Bonotto, E. de M., Federson, M., & Muldowney, P. (2021). The Black-Scholes equation with impulses at random times via generalized Riemann integral. Proceedings of the Singapore National Academy of Science, 15( 1), 45-59. doi:10.1142/S2591722621400068
    • NLM

      Bonotto E de M, Federson M, Muldowney P. The Black-Scholes equation with impulses at random times via generalized Riemann integral [Internet]. Proceedings of the Singapore National Academy of Science. 2021 ; 15( 1): 45-59.[citado 2026 fev. 22 ] Available from: https://doi.org/10.1142/S2591722621400068
    • Vancouver

      Bonotto E de M, Federson M, Muldowney P. The Black-Scholes equation with impulses at random times via generalized Riemann integral [Internet]. Proceedings of the Singapore National Academy of Science. 2021 ; 15( 1): 45-59.[citado 2026 fev. 22 ] Available from: https://doi.org/10.1142/S2591722621400068
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ESTABILIDADE DE LIAPUNOV, EQUAÇÕES IMPULSIVAS, ESTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e SOUTO, Ginnara M. On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, v. 53, n. 1, p. 127-150, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.042. Acesso em: 22 fev. 2026.
    • APA

      Bonotto, E. de M., & Souto, G. M. (2019). On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, 53( 1), 127-150. doi:10.12775/TMNA.2018.042
    • NLM

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.[citado 2026 fev. 22 ] Available from: https://doi.org/10.12775/TMNA.2018.042
    • Vancouver

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.[citado 2026 fev. 22 ] Available from: https://doi.org/10.12775/TMNA.2018.042
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES IMPULSIVAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e JIMENEZ, Manuel Francisco Zuloeta. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, v. 44, n. 1, p. 121-141, 2014Tradução . . Disponível em: https://doi.org/10.12775/tmna.2014.039. Acesso em: 22 fev. 2026.
    • APA

      Bonotto, E. de M., & Jimenez, M. F. Z. (2014). On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, 44( 1), 121-141. doi:10.12775/tmna.2014.039
    • NLM

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.[citado 2026 fev. 22 ] Available from: https://doi.org/10.12775/tmna.2014.039
    • Vancouver

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.[citado 2026 fev. 22 ] Available from: https://doi.org/10.12775/tmna.2014.039

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026