Filtros : "hydrodynamic limit" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Probability. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna et al. Non local branching Brownian motions with annihilation and free boundary problems. Electronic Journal of Probability, v. 24, p. 1-30, 2019Tradução . . Disponível em: https://doi.org/10.1214/19-ejp324. Acesso em: 27 jan. 2026.
    • APA

      De Masi, A., Ferrari, P. A., Presutti, E., & Soprano-Loto, N. (2019). Non local branching Brownian motions with annihilation and free boundary problems. Electronic Journal of Probability, 24, 1-30. doi:10.1214/19-ejp324
    • NLM

      De Masi A, Ferrari PA, Presutti E, Soprano-Loto N. Non local branching Brownian motions with annihilation and free boundary problems [Internet]. Electronic Journal of Probability. 2019 ; 24 1-30.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1214/19-ejp324
    • Vancouver

      De Masi A, Ferrari PA, Presutti E, Soprano-Loto N. Non local branching Brownian motions with annihilation and free boundary problems [Internet]. Electronic Journal of Probability. 2019 ; 24 1-30.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1214/19-ejp324
  • Source: Advances in Applied Probability. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      UQUILLAS, Adriana e SIMONIS, Adilson. First displacement time of a tagged particle in a stochastic cluster in a simple exclusion process with random slow bonds. Advances in Applied Probability, v. 51, n. 3, p. 717-744, 2019Tradução . . Disponível em: https://doi.org/10.1017/apr.2019.31. Acesso em: 27 jan. 2026.
    • APA

      Uquillas, A., & Simonis, A. (2019). First displacement time of a tagged particle in a stochastic cluster in a simple exclusion process with random slow bonds. Advances in Applied Probability, 51( 3), 717-744. doi:10.1017/apr.2019.31
    • NLM

      Uquillas A, Simonis A. First displacement time of a tagged particle in a stochastic cluster in a simple exclusion process with random slow bonds [Internet]. Advances in Applied Probability. 2019 ; 51( 3): 717-744.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1017/apr.2019.31
    • Vancouver

      Uquillas A, Simonis A. First displacement time of a tagged particle in a stochastic cluster in a simple exclusion process with random slow bonds [Internet]. Advances in Applied Probability. 2019 ; 51( 3): 717-744.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1017/apr.2019.31
  • Source: Annals of Applied Probability. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto e RAVISHANKAR, Krishnamurthi. Shocks in a asymmetric exclusion automata. Annals of Applied Probability, v. 2 , n. 4 , p. 928-941, 1992Tradução . . Disponível em: https://doi.org/10.1214/aoap/1177005581. Acesso em: 27 jan. 2026.
    • APA

      Ferrari, P. A., & Ravishankar, K. (1992). Shocks in a asymmetric exclusion automata. Annals of Applied Probability, 2 ( 4 ), 928-941. doi:10.1214/aoap/1177005581
    • NLM

      Ferrari PA, Ravishankar K. Shocks in a asymmetric exclusion automata [Internet]. Annals of Applied Probability. 1992 ; 2 ( 4 ): 928-941.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1214/aoap/1177005581
    • Vancouver

      Ferrari PA, Ravishankar K. Shocks in a asymmetric exclusion automata [Internet]. Annals of Applied Probability. 1992 ; 2 ( 4 ): 928-941.[citado 2026 jan. 27 ] Available from: https://doi.org/10.1214/aoap/1177005581

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026