Filtros : "homogeneous tree" Limpar

Filtros



Refine with date range


  • Source: Journal of Applied Probability. Unidade: ICMC

    Subjects: , PROBABILIDADE, PERCOLAÇÃO, TEORIA DA RENOVAÇÃO, PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALLO, Sandro e RODRIGUEZ, Pablo Martin. Frog models on trees through renewal theory. Journal of Applied Probability, v. No 2018, n. 3, p. 887-899, 2018Tradução . . Disponível em: https://doi.org/10.1017/jpr.2018.56. Acesso em: 29 jan. 2026.
    • APA

      Gallo, S., & Rodriguez, P. M. (2018). Frog models on trees through renewal theory. Journal of Applied Probability, No 2018( 3), 887-899. doi:10.1017/jpr.2018.56
    • NLM

      Gallo S, Rodriguez PM. Frog models on trees through renewal theory [Internet]. Journal of Applied Probability. 2018 ; No 2018( 3): 887-899.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1017/jpr.2018.56
    • Vancouver

      Gallo S, Rodriguez PM. Frog models on trees through renewal theory [Internet]. Journal of Applied Probability. 2018 ; No 2018( 3): 887-899.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1017/jpr.2018.56
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEBENSZTAYN, Élcio e MACHADO, Fábio Prates e POPOV, Serguei Yu. An improved upper bound for the critical probability of the frog model on homogeneous trees. Journal of Statistical Physics, v. 119, n. 1-2, p. 331-345, 2005Tradução . . Disponível em: https://doi.org/10.1007/s10955-004-2051-8. Acesso em: 29 jan. 2026.
    • APA

      Lebensztayn, É., Machado, F. P., & Popov, S. Y. (2005). An improved upper bound for the critical probability of the frog model on homogeneous trees. Journal of Statistical Physics, 119( 1-2), 331-345. doi:10.1007/s10955-004-2051-8
    • NLM

      Lebensztayn É, Machado FP, Popov SY. An improved upper bound for the critical probability of the frog model on homogeneous trees [Internet]. Journal of Statistical Physics. 2005 ; 119( 1-2): 331-345.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s10955-004-2051-8
    • Vancouver

      Lebensztayn É, Machado FP, Popov SY. An improved upper bound for the critical probability of the frog model on homogeneous trees [Internet]. Journal of Statistical Physics. 2005 ; 119( 1-2): 331-345.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s10955-004-2051-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026