Filtros : "group action" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2025, n. 60, p. 1-105, 2025Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2025.1.60. Acesso em: 27 jan. 2026.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2025). Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas. Electronic Journal of Qualitative Theory of Differential Equations, 2025( 60), 1-105. doi:10.14232/ejqtde.2025.1.60
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2025 ; 2025( 60): 1-105.[citado 2026 jan. 27 ] Available from: https://doi.org/10.14232/ejqtde.2025.1.60
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Configurations of quadratic systems possessing three distinct infinite singularities and one or more invariant parabolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2025 ; 2025( 60): 1-105.[citado 2026 jan. 27 ] Available from: https://doi.org/10.14232/ejqtde.2025.1.60
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, TEORIA DA BIFURCAÇÃO, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, v. 59, n. 2A, p. 623-685, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.063. Acesso em: 27 jan. 2026.
    • APA

      Mota, M. C., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Geometric analysis of quadratic differential systems with invariant ellipses. Topological Methods in Nonlinear Analysis, 59( 2A), 623-685. doi:10.12775/TMNA.2021.063
    • NLM

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2026 jan. 27 ] Available from: https://doi.org/10.12775/TMNA.2021.063
    • Vancouver

      Mota MC, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 59( 2A): 623-685.[citado 2026 jan. 27 ] Available from: https://doi.org/10.12775/TMNA.2021.063
  • Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho et al. Geometric analysis of quadratic differential systems with invariant ellipses. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf. Acesso em: 27 jan. 2026. , 2019
    • APA

      Mota, M. C., Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2019). Geometric analysis of quadratic differential systems with invariant ellipses. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
    • NLM

      Mota MC, Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. 2019 ;[citado 2026 jan. 27 ] Available from: https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
    • Vancouver

      Mota MC, Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric analysis of quadratic differential systems with invariant ellipses [Internet]. 2019 ;[citado 2026 jan. 27 ] Available from: https://repositorio.usp.br/directbitstream/2845e217-374e-4bf0-a229-283b1ff03372/3005920.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. Electronic Journal of Differential Equations, v. 2017, n. 295, p. 1-122, 2017Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf. Acesso em: 27 jan. 2026.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2017). Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. Electronic Journal of Differential Equations, 2017( 295), 1-122. Recuperado de https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. Electronic Journal of Differential Equations. 2017 ; 2017( 295): 1-122.[citado 2026 jan. 27 ] Available from: https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. Electronic Journal of Differential Equations. 2017 ; 2017( 295): 1-122.[citado 2026 jan. 27 ] Available from: https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex C e VULPE, Nicolae. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12'. Electronic Journal of Differential Equations, v. 2016, n. 162, p. 1-50, 2016Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 27 jan. 2026.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., & Vulpe, N. (2016). Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12'. Electronic Journal of Differential Equations, 2016( 162), 1-50. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Oliveira RD dos S, Rezende AC, Vulpe N. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12' [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 162): 1-50.[citado 2026 jan. 27 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Oliveira RD dos S, Rezende AC, Vulpe N. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12' [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 162): 1-50.[citado 2026 jan. 27 ] Available from: http://ejde.math.txstate.edu/
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf. Acesso em: 27 jan. 2026. , 2016
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2016). Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2026 jan. 27 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. 2016 ;[citado 2026 jan. 27 ] Available from: https://repositorio.usp.br/directbitstream/7199618a-9a6f-4b91-afb8-d64ef64a38ab/NOTAS_ICMC_SERIE_MAT_429_2016.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026