Filtros : "global solvability" Limpar

Filtros



Refine with date range


  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS HIPOELÍTICAS, OPERADORES DIFERENCIAIS, GRUPOS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Gabriel e FERRA, Igor Ambo e RAGOGNETTE, Luis Fernando. Global analytic hypoellipticity and solvability of certain operators subject to group actions. Proceedings of the American Mathematical Society, v. 150, n. 11, p. 4771-4783, 2022Tradução . . Disponível em: https://doi.org/10.1090/proc/16118. Acesso em: 09 nov. 2024.
    • APA

      Araújo, G., Ferra, I. A., & Ragognette, L. F. (2022). Global analytic hypoellipticity and solvability of certain operators subject to group actions. Proceedings of the American Mathematical Society, 150( 11), 4771-4783. doi:10.1090/proc/16118
    • NLM

      Araújo G, Ferra IA, Ragognette LF. Global analytic hypoellipticity and solvability of certain operators subject to group actions [Internet]. Proceedings of the American Mathematical Society. 2022 ; 150( 11): 4771-4783.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/proc/16118
    • Vancouver

      Araújo G, Ferra IA, Ragognette LF. Global analytic hypoellipticity and solvability of certain operators subject to group actions [Internet]. Proceedings of the American Mathematical Society. 2022 ; 150( 11): 4771-4783.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1090/proc/16118
  • Source: Journal d'Analyse Mathematique. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES, GRUPOS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Gabriel e FERRA, Igor Ambo e RAGOGNETTE, Luis Fernando. Global solvability and propagation of regularity of sums of squares on compact manifolds. Journal d'Analyse Mathematique, v. 148, n. 1, p. 85-118, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11854-022-0223-6. Acesso em: 09 nov. 2024.
    • APA

      Araújo, G., Ferra, I. A., & Ragognette, L. F. (2022). Global solvability and propagation of regularity of sums of squares on compact manifolds. Journal d'Analyse Mathematique, 148( 1), 85-118. doi:10.1007/s11854-022-0223-6
    • NLM

      Araújo G, Ferra IA, Ragognette LF. Global solvability and propagation of regularity of sums of squares on compact manifolds [Internet]. Journal d'Analyse Mathematique. 2022 ; 148( 1): 85-118.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11854-022-0223-6
    • Vancouver

      Araújo G, Ferra IA, Ragognette LF. Global solvability and propagation of regularity of sums of squares on compact manifolds [Internet]. Journal d'Analyse Mathematique. 2022 ; 148( 1): 85-118.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s11854-022-0223-6
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, SOLUÇÕES PERIÓDICAS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, Marcelo Fernandes de e DATTORI DA SILVA, Paulo Leandro. Solvability of a class of first order differential operators on the torus. Results in Mathematics, v. 76, n. 2, p. 1-17, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00025-021-01413-6. Acesso em: 09 nov. 2024.
    • APA

      Almeida, M. F. de, & Dattori da Silva, P. L. (2021). Solvability of a class of first order differential operators on the torus. Results in Mathematics, 76( 2), 1-17. doi:10.1007/s00025-021-01413-6
    • NLM

      Almeida MF de, Dattori da Silva PL. Solvability of a class of first order differential operators on the torus [Internet]. Results in Mathematics. 2021 ; 76( 2): 1-17.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00025-021-01413-6
    • Vancouver

      Almeida MF de, Dattori da Silva PL. Solvability of a class of first order differential operators on the torus [Internet]. Results in Mathematics. 2021 ; 76( 2): 1-17.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1007/s00025-021-01413-6
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco et al. Geometrical proofs for the global solvability of systems. Mathematische Zeitschrift, v. No 2018, n. 16, p. 2367-2380, 2018Tradução . . Disponível em: https://doi.org/10.1002/mana.201700300. Acesso em: 09 nov. 2024.
    • APA

      Bergamasco, A. P., Parmeggiani, A., Zani, S. L., & Zugliani, G. A. (2018). Geometrical proofs for the global solvability of systems. Mathematische Zeitschrift, No 2018( 16), 2367-2380. doi:10.1002/mana.201700300
    • NLM

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Geometrical proofs for the global solvability of systems [Internet]. Mathematische Zeitschrift. 2018 ; No 2018( 16): 2367-2380.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1002/mana.201700300
    • Vancouver

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Geometrical proofs for the global solvability of systems [Internet]. Mathematische Zeitschrift. 2018 ; No 2018( 16): 2367-2380.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1002/mana.201700300

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024