Filtros : "global attractor" Limpar

Filtros



Refine with date range


  • Source: Discrete and Continuous Dynamical Systems Series B. Unidade: ICMC

    Subjects: MODELO CASCATA, ATRATORES, SEMIGRUPOS (COMBINATÓRIA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems. Discrete and Continuous Dynamical Systems Series B, v. 26, n. 9, p. 4645-4661, 2021Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020306. Acesso em: 09 fev. 2026.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Collegari, R., & Uzal, J. M. (2021). Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems. Discrete and Continuous Dynamical Systems Series B, 26( 9), 4645-4661. doi:10.3934/dcdsb.2020306
    • NLM

      Bonotto E de M, Bortolan MC, Collegari R, Uzal JM. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems [Internet]. Discrete and Continuous Dynamical Systems Series B. 2021 ; 26( 9): 4645-4661.[citado 2026 fev. 09 ] Available from: https://doi.org/10.3934/dcdsb.2020306
    • Vancouver

      Bonotto E de M, Bortolan MC, Collegari R, Uzal JM. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems [Internet]. Discrete and Continuous Dynamical Systems Series B. 2021 ; 26( 9): 4645-4661.[citado 2026 fev. 09 ] Available from: https://doi.org/10.3934/dcdsb.2020306
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO, Rawlilson de Oliveira et al. Global attractors for a system of elasticity with small delays. Mathematical Methods in the Applied Sciences, v. 44, n. 8, p. 6911-6922, 2021Tradução . . Disponível em: https://doi.org/10.1002/mma.7232. Acesso em: 09 fev. 2026.
    • APA

      Araújo, R. de O., Bocanegra-Rodríguez, L. E., Calsavara, B. M. R., Seminario-Huertas, P. N., & Sotelo-Pejerrey, A. (2021). Global attractors for a system of elasticity with small delays. Mathematical Methods in the Applied Sciences, 44( 8), 6911-6922. doi:10.1002/mma.7232
    • NLM

      Araújo R de O, Bocanegra-Rodríguez LE, Calsavara BMR, Seminario-Huertas PN, Sotelo-Pejerrey A. Global attractors for a system of elasticity with small delays [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 44( 8): 6911-6922.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1002/mma.7232
    • Vancouver

      Araújo R de O, Bocanegra-Rodríguez LE, Calsavara BMR, Seminario-Huertas PN, Sotelo-Pejerrey A. Global attractors for a system of elasticity with small delays [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 44( 8): 6911-6922.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1002/mma.7232
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Pricila S. e PEREIRA, Antônio Luiz. Continuity of attractors for C1 perturbations of a smooth domain. Electronic Journal of Differential Equations, n. 97, p. 1-31, 2020Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf. Acesso em: 09 fev. 2026.
    • APA

      Barbosa, P. S., & Pereira, A. L. (2020). Continuity of attractors for C1 perturbations of a smooth domain. Electronic Journal of Differential Equations, ( 97), 1-31. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf
    • NLM

      Barbosa PS, Pereira AL. Continuity of attractors for C1 perturbations of a smooth domain [Internet]. Electronic Journal of Differential Equations. 2020 ;( 97): 1-31.[citado 2026 fev. 09 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf
    • Vancouver

      Barbosa PS, Pereira AL. Continuity of attractors for C1 perturbations of a smooth domain [Internet]. Electronic Journal of Differential Equations. 2020 ;( 97): 1-31.[citado 2026 fev. 09 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LANGA, José Antonio e ROBINSON, James C. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, v. 19, n. 4, p. 1997-2013, 2020Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2020088. Acesso em: 09 fev. 2026.
    • APA

      Carvalho, A. N. de, Langa, J. A., & Robinson, J. C. (2020). Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 19( 4), 1997-2013. doi:10.3934/cpaa.2020088
    • NLM

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2026 fev. 09 ] Available from: https://doi.org/10.3934/cpaa.2020088
    • Vancouver

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.[citado 2026 fev. 09 ] Available from: https://doi.org/10.3934/cpaa.2020088
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES INTEGRO-DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA TOPOLÓGICA, ESTABILIDADE DE LIAPUNOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Severino Horácio da e PEREIRA, Antônio Luiz. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, v. 51, n. 2, p. 583-598, 2018Tradução . . Disponível em: https://doi.org/10.12775/tmna.2018.004. Acesso em: 09 fev. 2026.
    • APA

      Silva, S. H. da, & Pereira, A. L. (2018). A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, 51( 2), 583-598. doi:10.12775/tmna.2018.004
    • NLM

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2026 fev. 09 ] Available from: https://doi.org/10.12775/tmna.2018.004
    • Vancouver

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2026 fev. 09 ] Available from: https://doi.org/10.12775/tmna.2018.004
  • Source: SIAM Journal on Mathematical Analysis. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e MONTEIRO, Rodrigo Nunes. Singular limit and long-time dynamics of Bresse systems. SIAM Journal on Mathematical Analysis, v. 49, n. 4, p. 2468-2495, 2017Tradução . . Disponível em: https://doi.org/10.1137/15M1039894. Acesso em: 09 fev. 2026.
    • APA

      Ma, T. F., & Monteiro, R. N. (2017). Singular limit and long-time dynamics of Bresse systems. SIAM Journal on Mathematical Analysis, 49( 4), 2468-2495. doi:10.1137/15M1039894
    • NLM

      Ma TF, Monteiro RN. Singular limit and long-time dynamics of Bresse systems [Internet]. SIAM Journal on Mathematical Analysis. 2017 ; 49( 4): 2468-2495.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1137/15M1039894
    • Vancouver

      Ma TF, Monteiro RN. Singular limit and long-time dynamics of Bresse systems [Internet]. SIAM Journal on Mathematical Analysis. 2017 ; 49( 4): 2468-2495.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1137/15M1039894
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Assunto: EQUAÇÕES INTEGRO-DIFERENCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Saulo Rabello Maciel de et al. Spatially periodic equilibria for a non local evolution equation. Discrete and Continuous Dynamical Systems, v. 9, n. 4, p. 937-948, 2003Tradução . . Disponível em: https://doi.org/10.3934/dcds.2003.9.937. Acesso em: 09 fev. 2026.
    • APA

      Barros, S. R. M. de, Pereira, A. L., Possani, C., & Simonis, A. (2003). Spatially periodic equilibria for a non local evolution equation. Discrete and Continuous Dynamical Systems, 9( 4), 937-948. doi:10.3934/dcds.2003.9.937
    • NLM

      Barros SRM de, Pereira AL, Possani C, Simonis A. Spatially periodic equilibria for a non local evolution equation [Internet]. Discrete and Continuous Dynamical Systems. 2003 ; 9( 4): 937-948.[citado 2026 fev. 09 ] Available from: https://doi.org/10.3934/dcds.2003.9.937
    • Vancouver

      Barros SRM de, Pereira AL, Possani C, Simonis A. Spatially periodic equilibria for a non local evolution equation [Internet]. Discrete and Continuous Dynamical Systems. 2003 ; 9( 4): 937-948.[citado 2026 fev. 09 ] Available from: https://doi.org/10.3934/dcds.2003.9.937
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Luiz Augusto F. de. On reaction-diffusion systems. Electronic Journal of Differential Equations, v. 1998, n. 24, p. 1-10, 1998Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/1998/24/Oliveira.pdf. Acesso em: 09 fev. 2026.
    • APA

      Oliveira, L. A. F. de. (1998). On reaction-diffusion systems. Electronic Journal of Differential Equations, 1998( 24), 1-10. Recuperado de https://ejde.math.txstate.edu/Volumes/1998/24/Oliveira.pdf
    • NLM

      Oliveira LAF de. On reaction-diffusion systems [Internet]. Electronic Journal of Differential Equations. 1998 ; 1998( 24): 1-10.[citado 2026 fev. 09 ] Available from: https://ejde.math.txstate.edu/Volumes/1998/24/Oliveira.pdf
    • Vancouver

      Oliveira LAF de. On reaction-diffusion systems [Internet]. Electronic Journal of Differential Equations. 1998 ; 1998( 24): 1-10.[citado 2026 fev. 09 ] Available from: https://ejde.math.txstate.edu/Volumes/1998/24/Oliveira.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026