Filtros : "geometric distribution" Limpar

Filtros



Refine with date range


  • Source: Communications for Statistical Applications and Methods. Unidade: ICMC

    Subjects: DISTRIBUIÇÕES (PROBABILIDADE), VEROSSIMILHANÇA, ANÁLISE DE SOBREVIVÊNCIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARRIGA, Gladys D. C. et al. The Marshall-Olkin generalized gamma distribution. Communications for Statistical Applications and Methods, v. 25, n. 3, p. 245-261, 2018Tradução . . Disponível em: https://doi.org/10.29220/CSAM.2018.25.3.245. Acesso em: 29 jan. 2026.
    • APA

      Barriga, G. D. C., Cordeiro, G. M., Dey, D. K., Cancho, V. G., Louzada, F., & Suzuki, A. K. (2018). The Marshall-Olkin generalized gamma distribution. Communications for Statistical Applications and Methods, 25( 3), 245-261. doi:10.29220/CSAM.2018.25.3.245
    • NLM

      Barriga GDC, Cordeiro GM, Dey DK, Cancho VG, Louzada F, Suzuki AK. The Marshall-Olkin generalized gamma distribution [Internet]. Communications for Statistical Applications and Methods. 2018 ; 25( 3): 245-261.[citado 2026 jan. 29 ] Available from: https://doi.org/10.29220/CSAM.2018.25.3.245
    • Vancouver

      Barriga GDC, Cordeiro GM, Dey DK, Cancho VG, Louzada F, Suzuki AK. The Marshall-Olkin generalized gamma distribution [Internet]. Communications for Statistical Applications and Methods. 2018 ; 25( 3): 245-261.[citado 2026 jan. 29 ] Available from: https://doi.org/10.29220/CSAM.2018.25.3.245
  • Source: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Assunto: ANÁLISE DE SOBREVIVÊNCIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALLARDO, Diego I. e GÓMEZ, Yolanda M. e CASTRO, Mário de. A flexible cure rate model based on the polylogarithm distribution. Journal of Statistical Computation and Simulation, v. 88, n. 11, p. 2137-2149, 2018Tradução . . Disponível em: https://doi.org/10.1080/00949655.2018.1451850. Acesso em: 29 jan. 2026.
    • APA

      Gallardo, D. I., Gómez, Y. M., & Castro, M. de. (2018). A flexible cure rate model based on the polylogarithm distribution. Journal of Statistical Computation and Simulation, 88( 11), 2137-2149. doi:10.1080/00949655.2018.1451850
    • NLM

      Gallardo DI, Gómez YM, Castro M de. A flexible cure rate model based on the polylogarithm distribution [Internet]. Journal of Statistical Computation and Simulation. 2018 ; 88( 11): 2137-2149.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1080/00949655.2018.1451850
    • Vancouver

      Gallardo DI, Gómez YM, Castro M de. A flexible cure rate model based on the polylogarithm distribution [Internet]. Journal of Statistical Computation and Simulation. 2018 ; 88( 11): 2137-2149.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1080/00949655.2018.1451850
  • Source: Journal of Statistical Computation and Simulation. Unidade: ICMC

    Subjects: PROBABILIDADE GEOMÉTRICA, DISTRIBUIÇÕES (PROBABILIDADE), ANÁLISE DE SOBREVIVÊNCIA, DADOS CENSURADOS, VEROSSIMILHANÇA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOJEIRO, Cynthia et al. The complementary Weibull geometric distribution. Journal of Statistical Computation and Simulation, v. 84, n. 6, p. 1345-1362, 2014Tradução . . Disponível em: https://doi.org/10.1080/00949655.2012.744406. Acesso em: 29 jan. 2026.
    • APA

      Tojeiro, C., Louzada, F., Roman, M., & Borges, P. (2014). The complementary Weibull geometric distribution. Journal of Statistical Computation and Simulation, 84( 6), 1345-1362. doi:10.1080/00949655.2012.744406
    • NLM

      Tojeiro C, Louzada F, Roman M, Borges P. The complementary Weibull geometric distribution [Internet]. Journal of Statistical Computation and Simulation. 2014 ; 84( 6): 1345-1362.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1080/00949655.2012.744406
    • Vancouver

      Tojeiro C, Louzada F, Roman M, Borges P. The complementary Weibull geometric distribution [Internet]. Journal of Statistical Computation and Simulation. 2014 ; 84( 6): 1345-1362.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1080/00949655.2012.744406

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026