Filtros : "braid groups" Limpar

Filtros



Refine with date range


  • Source: Acta Mathematica Sinica, English Series. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. Free cyclic actions on surfaces and the Borsuk-Ulam theorem. Acta Mathematica Sinica, English Series, v. 38, p. 1803-1822, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10114-022-2202-3. Acesso em: 22 jan. 2026.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2022). Free cyclic actions on surfaces and the Borsuk-Ulam theorem. Acta Mathematica Sinica, English Series, 38, 1803-1822. doi:10.1007/s10114-022-2202-3
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. Free cyclic actions on surfaces and the Borsuk-Ulam theorem [Internet]. Acta Mathematica Sinica, English Series. 2022 ; 38 1803-1822.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s10114-022-2202-3
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. Free cyclic actions on surfaces and the Borsuk-Ulam theorem [Internet]. Acta Mathematica Sinica, English Series. 2022 ; 38 1803-1822.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s10114-022-2202-3
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, v. 60, n. 2, p. 491-516, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2022.005. Acesso em: 22 jan. 2026.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2022). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2. Topological Methods in Nonlinear Analysis, 60( 2), 491-516. doi:10.12775/TMNA.2022.005
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2026 jan. 22 ] Available from: https://doi.org/10.12775/TMNA.2022.005
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle - part 2 [Internet]. Topological Methods in Nonlinear Analysis. 2022 ; 60( 2): 491-516.[citado 2026 jan. 22 ] Available from: https://doi.org/10.12775/TMNA.2022.005
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 529-558, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.003. Acesso em: 22 jan. 2026.
    • APA

      Gonçalves, D. L., Cardona, F. S. P., Guaschi, J., & Laass, V. C. (2020). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, 56( 2), 529-558. doi:10.12775/TMNA.2020.003
    • NLM

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2026 jan. 22 ] Available from: https://doi.org/10.12775/TMNA.2020.003
    • Vancouver

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2026 jan. 22 ] Available from: https://doi.org/10.12775/TMNA.2020.003
  • Source: Journal of Fixed Point Theory and Applications. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, BRAIDS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, v. 21, n. 2, p. 1-29, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11784-019-0693-z. Acesso em: 22 jan. 2026.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2019). The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, 21( 2), 1-29. doi:10.1007/s11784-019-0693-z
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s11784-019-0693-z
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s11784-019-0693-z
  • Source: Chinese Annals of Mathematics, Series B. Unidade: IME

    Subjects: HOMOTOPIA, ESPAÇOS FIBRADOS, BRAIDS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product. Chinese Annals of Mathematics, Series B, v. 38, n. 6, p. 1223-1246, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11401-017-1033-5. Acesso em: 22 jan. 2026.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2017). A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product. Chinese Annals of Mathematics, Series B, 38( 6), 1223-1246. doi:10.1007/s11401-017-1033-5
    • NLM

      Gonçalves DL, Guaschi J. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product [Internet]. Chinese Annals of Mathematics, Series B. 2017 ; 38( 6): 1223-1246.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s11401-017-1033-5
    • Vancouver

      Gonçalves DL, Guaschi J. A survey of the homotopy properties of inclusion of certain types of configuration spaces into the Cartesian product [Internet]. Chinese Annals of Mathematics, Series B. 2017 ; 38( 6): 1223-1246.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s11401-017-1033-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026