Filtros : "Upper semicontinuity" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES NÃO LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, v. 37, n. Ju 2025, p. 1917-1932, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10341-8. Acesso em: 19 fev. 2026.
    • APA

      Belluzi, M., Bortolan, M. C., Castro, U., & Fernandes, J. (2025). Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, 37( Ju 2025), 1917-1932. doi:10.1007/s10884-023-10341-8
    • NLM

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
    • Vancouver

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares et al. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, v. 365, p. 521-559, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.022. Acesso em: 19 fev. 2026.
    • APA

      Azevedo, V. T., Bonotto, E. de M., Cunha, A. C., & Nascimento, M. J. D. (2023). Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order. Journal of Differential Equations, 365, 521-559. doi:10.1016/j.jde.2023.04.022
    • NLM

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
    • Vancouver

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence and stability of pullback exponential attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Journal of Differential Equations. 2023 ; 365 521-559.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.jde.2023.04.022
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 19 fev. 2026.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Source: Computers & Mathematics with Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e NOGUEIRA, Ariadne e PEREIRA, Marcone Corrêa. Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Computers & Mathematics with Applications, v. 77, n. 2, p. 536-554, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.camwa.2018.09.056. Acesso em: 19 fev. 2026.
    • APA

      Arrieta, J. M., Nogueira, A., & Pereira, M. C. (2019). Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries. Computers & Mathematics with Applications, 77( 2), 536-554. doi:10.1016/j.camwa.2018.09.056
    • NLM

      Arrieta JM, Nogueira A, Pereira MC. Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries [Internet]. Computers & Mathematics with Applications. 2019 ; 77( 2): 536-554.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.camwa.2018.09.056
    • Vancouver

      Arrieta JM, Nogueira A, Pereira MC. Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries [Internet]. Computers & Mathematics with Applications. 2019 ; 77( 2): 536-554.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1016/j.camwa.2018.09.056
  • Source: Zeitschrift für angewandte Mathematik und Physik. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa. Asymptotic analysis of a semilinear elliptic equation in highly oscillating thin domains. Zeitschrift für angewandte Mathematik und Physik, v. 67, n. 5, p. 1-14, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00033-016-0727-y. Acesso em: 19 fev. 2026.
    • APA

      Pereira, M. C. (2016). Asymptotic analysis of a semilinear elliptic equation in highly oscillating thin domains. Zeitschrift für angewandte Mathematik und Physik, 67( 5), 1-14. doi:10.1007/s00033-016-0727-y
    • NLM

      Pereira MC. Asymptotic analysis of a semilinear elliptic equation in highly oscillating thin domains [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2016 ; 67( 5): 1-14.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s00033-016-0727-y
    • Vancouver

      Pereira MC. Asymptotic analysis of a semilinear elliptic equation in highly oscillating thin domains [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2016 ; 67( 5): 1-14.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1007/s00033-016-0727-y

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026