Filtros : "Tikhonov regularization" Limpar

Filtros



Refine with date range


  • Source: Computational and Applied Mathematics. Unidade: ICMC

    Subjects: PROBLEMAS INVERSOS, MÉTODOS NUMÉRICOS, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REDDY, Gujji Murali Mohan et al. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem. Computational and Applied Mathematics, v. 40, p. 1-26, 2021Tradução . . Disponível em: https://doi.org/10.1007/s40314-021-01454-1. Acesso em: 23 jan. 2026.
    • APA

      Reddy, G. M. M., Nanda, P., Vynnycky, M., & Cuminato, J. A. (2021). An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem. Computational and Applied Mathematics, 40, 1-26. doi:10.1007/s40314-021-01454-1
    • NLM

      Reddy GMM, Nanda P, Vynnycky M, Cuminato JA. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem [Internet]. Computational and Applied Mathematics. 2021 ; 40 1-26.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s40314-021-01454-1
    • Vancouver

      Reddy GMM, Nanda P, Vynnycky M, Cuminato JA. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem [Internet]. Computational and Applied Mathematics. 2021 ; 40 1-26.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s40314-021-01454-1
  • Source: Journal of Applied Research and Technology. Unidade: FFCLRP

    Subjects: RECOZIMENTO, PROBLEMAS INVERSOS, CURVAS DE DOSE-RESPOSTA, MÉTODO DE MONTE CARLO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VISBAL, Jorge Homero Wilches e NICOLUCCI, Patricia. Improved reconstruction methodology of clinical electron energy spectra based on Tikhonov regularization and generalized simulated annealing. Journal of Applied Research and Technology, v. 19, n. 6, p. 622-632, 2021Tradução . . Disponível em: https://doi.org/10.22201/icat.24486736e.2021.19.6.1213. Acesso em: 23 jan. 2026.
    • APA

      Visbal, J. H. W., & Nicolucci, P. (2021). Improved reconstruction methodology of clinical electron energy spectra based on Tikhonov regularization and generalized simulated annealing. Journal of Applied Research and Technology, 19( 6), 622-632. doi:10.22201/icat.24486736e.2021.19.6.1213
    • NLM

      Visbal JHW, Nicolucci P. Improved reconstruction methodology of clinical electron energy spectra based on Tikhonov regularization and generalized simulated annealing [Internet]. Journal of Applied Research and Technology. 2021 ; 19( 6): 622-632.[citado 2026 jan. 23 ] Available from: https://doi.org/10.22201/icat.24486736e.2021.19.6.1213
    • Vancouver

      Visbal JHW, Nicolucci P. Improved reconstruction methodology of clinical electron energy spectra based on Tikhonov regularization and generalized simulated annealing [Internet]. Journal of Applied Research and Technology. 2021 ; 19( 6): 622-632.[citado 2026 jan. 23 ] Available from: https://doi.org/10.22201/icat.24486736e.2021.19.6.1213
  • Source: Journal of Computational and Applied Mathematics. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, ANÁLISE NUMÉRICA, ESCOAMENTO MULTIFÁSICO, ALGORITMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REDDY, G. M. M. e VYNNYCKY, M. e CUMINATO, José Alberto. An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem. Journal of Computational and Applied Mathematics, v. 349, p. 21-40, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.cam.2018.09.004. Acesso em: 23 jan. 2026.
    • APA

      Reddy, G. M. M., Vynnycky, M., & Cuminato, J. A. (2019). An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem. Journal of Computational and Applied Mathematics, 349, 21-40. doi:10.1016/j.cam.2018.09.004
    • NLM

      Reddy GMM, Vynnycky M, Cuminato JA. An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem [Internet]. Journal of Computational and Applied Mathematics. 2019 ; 349 21-40.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.cam.2018.09.004
    • Vancouver

      Reddy GMM, Vynnycky M, Cuminato JA. An efficient adaptive boundary algorithm to reconstruct Neumann boundary data in the MFS for the inverse Stefan problem [Internet]. Journal of Computational and Applied Mathematics. 2019 ; 349 21-40.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.cam.2018.09.004
  • Source: Abstracts book and scientific program. Conference titles: NMR Users Meeting. Unidade: IFSC

    Subjects: DINÂMICA DOS FLUÍDOS COMPUTACIONAL, IMAGEM POR RESSONÂNCIA MAGNÉTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOLCIA, Gustavo et al. Inverse Laplace transform optimization for applications in porous media. 2019, Anais.. Rio de Janeiro: Associação de Usuários de Ressonância Magnética Nuclear - AUREMN, 2019. . Acesso em: 23 jan. 2026.
    • APA

      Solcia, G., Montrazi, E. T., Bonagamba, T. J., & Paiva, F. F. (2019). Inverse Laplace transform optimization for applications in porous media. In Abstracts book and scientific program. Rio de Janeiro: Associação de Usuários de Ressonância Magnética Nuclear - AUREMN.
    • NLM

      Solcia G, Montrazi ET, Bonagamba TJ, Paiva FF. Inverse Laplace transform optimization for applications in porous media. Abstracts book and scientific program. 2019 ;[citado 2026 jan. 23 ]
    • Vancouver

      Solcia G, Montrazi ET, Bonagamba TJ, Paiva FF. Inverse Laplace transform optimization for applications in porous media. Abstracts book and scientific program. 2019 ;[citado 2026 jan. 23 ]
  • Source: Journal of Magnetic Resonance. Unidade: IFSC

    Subjects: POLÍMEROS (MATERIAIS), RESSONÂNCIA MAGNÉTICA NUCLEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FILGUEIRAS, Jefferson Gonçalves et al. Dipolar filtered magic-sandwich-echoes as a tool for probing molecular motions using time domain NMR. Journal of Magnetic Resonance, v. 285, p. 47-54, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmr.2017.10.008. Acesso em: 23 jan. 2026.
    • APA

      Filgueiras, J. G., Silva, U. B. da, Paro, G., D'Eurydice, M. N., Cobo, M. F., & Azevêdo, E. R. de. (2017). Dipolar filtered magic-sandwich-echoes as a tool for probing molecular motions using time domain NMR. Journal of Magnetic Resonance, 285, 47-54. doi:10.1016/j.jmr.2017.10.008
    • NLM

      Filgueiras JG, Silva UB da, Paro G, D'Eurydice MN, Cobo MF, Azevêdo ER de. Dipolar filtered magic-sandwich-echoes as a tool for probing molecular motions using time domain NMR [Internet]. Journal of Magnetic Resonance. 2017 ; 285 47-54.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.jmr.2017.10.008
    • Vancouver

      Filgueiras JG, Silva UB da, Paro G, D'Eurydice MN, Cobo MF, Azevêdo ER de. Dipolar filtered magic-sandwich-echoes as a tool for probing molecular motions using time domain NMR [Internet]. Journal of Magnetic Resonance. 2017 ; 285 47-54.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.jmr.2017.10.008

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026