Filtros : "Standing wave" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, SISTEMAS HAMILTONIANOS, OPERADORES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia e OHTA, Masahito. Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph. Nonlinear Analysis, v. 196, p. 1-23, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.na.2020.111753. Acesso em: 22 jan. 2026.
    • APA

      Goloshchapova, N., & Ohta, M. (2020). Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph. Nonlinear Analysis, 196, 1-23. doi:10.1016/j.na.2020.111753
    • NLM

      Goloshchapova N, Ohta M. Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph [Internet]. Nonlinear Analysis. 2020 ; 196 1-23.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.na.2020.111753
    • Vancouver

      Goloshchapova N, Ohta M. Blow-up and strong instability of standing waves for the NLS-δ equation on a star graph [Internet]. Nonlinear Analysis. 2020 ; 196 1-23.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.na.2020.111753
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÃO DE SCHRODINGER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia. On the standing waves of the NLS-log equation with a point interaction on a star graph. Journal of Mathematical Analysis and Applications, v. 473, n. 1, p. 53-70, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.12.019. Acesso em: 22 jan. 2026.
    • APA

      Goloshchapova, N. (2019). On the standing waves of the NLS-log equation with a point interaction on a star graph. Journal of Mathematical Analysis and Applications, 473( 1), 53-70. doi:10.1016/j.jmaa.2018.12.019
    • NLM

      Goloshchapova N. On the standing waves of the NLS-log equation with a point interaction on a star graph [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 473( 1): 53-70.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.jmaa.2018.12.019
    • Vancouver

      Goloshchapova N. On the standing waves of the NLS-log equation with a point interaction on a star graph [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 473( 1): 53-70.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1016/j.jmaa.2018.12.019
  • Source: Nonlinear Differential Equations and Applications NoDEA. Unidade: IME

    Subjects: OPERADORES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS, EQUAÇÃO DE SCHRODINGER

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e GOLOSHCHAPOVA, Nataliia. Stability of standing waves for NLS-log equation with δ-interaction. Nonlinear Differential Equations and Applications NoDEA, v. 24, p. 1-23, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00030-017-0451-0. Acesso em: 22 jan. 2026.
    • APA

      Pava, J. A., & Goloshchapova, N. (2017). Stability of standing waves for NLS-log equation with δ-interaction. Nonlinear Differential Equations and Applications NoDEA, 24, 1-23. doi:10.1007/s00030-017-0451-0
    • NLM

      Pava JA, Goloshchapova N. Stability of standing waves for NLS-log equation with δ-interaction [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2017 ; 24 1-23.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s00030-017-0451-0
    • Vancouver

      Pava JA, Goloshchapova N. Stability of standing waves for NLS-log equation with δ-interaction [Internet]. Nonlinear Differential Equations and Applications NoDEA. 2017 ; 24 1-23.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1007/s00030-017-0451-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026