Subjects: ENGENHARIA DE SOFTWARE, SOFTWARES
ABNT
DAMASCENO, Carlos Diego Nascimento. Learning finite state machine models of evolving systems: From evolution over time to variability in space. 2020. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02092020-091958/. Acesso em: 20 jan. 2026.APA
Damasceno, C. D. N. (2020). Learning finite state machine models of evolving systems: From evolution over time to variability in space (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02092020-091958/NLM
Damasceno CDN. Learning finite state machine models of evolving systems: From evolution over time to variability in space [Internet]. 2020 ;[citado 2026 jan. 20 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02092020-091958/Vancouver
Damasceno CDN. Learning finite state machine models of evolving systems: From evolution over time to variability in space [Internet]. 2020 ;[citado 2026 jan. 20 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02092020-091958/
