Filtros : "Redox reactions" Limpar

Filtros



Refine with date range


  • Source: ACS Omega. Unidade: IQSC

    Subjects: FÍSICO-QUÍMICA, ADSORÇÃO, APRENDIZADO COMPUTACIONAL, MOLÉCULA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENA, Lucas B et al. Optimizing molecular descriptors for reliable adsorption energy prediction on transition metal nanoclusters. ACS Omega, v. 11, p. 2962−2975, 2026Tradução . . Disponível em: https://doi.org/10.1021/acsomega.5c09138. Acesso em: 17 fev. 2026.
    • APA

      Pena, L. B., Calderan, F. V., Sousa, P. F., Andriani, K. F., Quiles, M. G., Silva, J. L. F. da, & Galvão, B. R. L. (2026). Optimizing molecular descriptors for reliable adsorption energy prediction on transition metal nanoclusters. ACS Omega, 11, 2962−2975. doi:10.1021/acsomega.5c09138
    • NLM

      Pena LB, Calderan FV, Sousa PF, Andriani KF, Quiles MG, Silva JLF da, Galvão BRL. Optimizing molecular descriptors for reliable adsorption energy prediction on transition metal nanoclusters [Internet]. ACS Omega. 2026 ;11 2962−2975.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acsomega.5c09138
    • Vancouver

      Pena LB, Calderan FV, Sousa PF, Andriani KF, Quiles MG, Silva JLF da, Galvão BRL. Optimizing molecular descriptors for reliable adsorption energy prediction on transition metal nanoclusters [Internet]. ACS Omega. 2026 ;11 2962−2975.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acsomega.5c09138
  • Source: ACS Omega. Unidades: EESC, IQSC

    Subjects: METAIS, CANA-DE-AÇÚCAR, CARBONO, TRATAMENTO DE ÁGUAS RESIDUÁRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NOGUEIRA, Elis W et al. Sugarcane vinasse and glycerol as potential carbon sources for sulfate-rich wastewater treatment: Mitigating the impacts of acid mine drainage. ACS Omega, v. 10, n. 50, p. 61679–61692, 2025Tradução . . Disponível em: https://doi.org/10.1021/acsomega.5c07834. Acesso em: 17 fev. 2026.
    • APA

      Nogueira, E. W., Godoi, L. A. G., Couto, P. T., Carneiro, R. B., Takeda, P. Y., Cunha, M. P., et al. (2025). Sugarcane vinasse and glycerol as potential carbon sources for sulfate-rich wastewater treatment: Mitigating the impacts of acid mine drainage. ACS Omega, 10( 50), 61679–61692. doi:10.1021/acsomega.5c07834
    • NLM

      Nogueira EW, Godoi LAG, Couto PT, Carneiro RB, Takeda PY, Cunha MP, Zampieri BDB, Brucha G, Damianovic MHRZ. Sugarcane vinasse and glycerol as potential carbon sources for sulfate-rich wastewater treatment: Mitigating the impacts of acid mine drainage [Internet]. ACS Omega. 2025 ; 10( 50): 61679–61692.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acsomega.5c07834
    • Vancouver

      Nogueira EW, Godoi LAG, Couto PT, Carneiro RB, Takeda PY, Cunha MP, Zampieri BDB, Brucha G, Damianovic MHRZ. Sugarcane vinasse and glycerol as potential carbon sources for sulfate-rich wastewater treatment: Mitigating the impacts of acid mine drainage [Internet]. ACS Omega. 2025 ; 10( 50): 61679–61692.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acsomega.5c07834
  • Source: Chemistry of Materials. Unidade: IQSC

    Subjects: BIOMATERIAIS, ELETRODO, PEPTÍDEOS, PROTEÍNAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLOMBO, Rafael N. P. e SEDENHO, Graziela Cristina e CRESPILHO, Frank Nelson. Challenges in Biomaterials Science for Electrochemical Biosensing and Bioenergy. Chemistry of Materials, v. 34, p. 10211−10222, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.chemmater.2c02080. Acesso em: 17 fev. 2026.
    • APA

      Colombo, R. N. P., Sedenho, G. C., & Crespilho, F. N. (2022). Challenges in Biomaterials Science for Electrochemical Biosensing and Bioenergy. Chemistry of Materials, 34, 10211−10222. doi:10.1021/acs.chemmater.2c02080
    • NLM

      Colombo RNP, Sedenho GC, Crespilho FN. Challenges in Biomaterials Science for Electrochemical Biosensing and Bioenergy [Internet]. Chemistry of Materials. 2022 ; 34 10211−10222.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acs.chemmater.2c02080
    • Vancouver

      Colombo RNP, Sedenho GC, Crespilho FN. Challenges in Biomaterials Science for Electrochemical Biosensing and Bioenergy [Internet]. Chemistry of Materials. 2022 ; 34 10211−10222.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acs.chemmater.2c02080
  • Source: Industrial & Engineering Chemistry Research. Unidade: IQSC

    Subjects: ELETROQUÍMICA, ELETRODO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORDEIRO JUNIOR, Paulo Jorge Marques et al. Highly Efficient Electrochemical Production of Hydrogen Peroxide Using the GDE Technology. Industrial & Engineering Chemistry Research, v. 61, p. 10660−10669, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.iecr.2c01669. Acesso em: 17 fev. 2026.
    • APA

      Cordeiro Junior, P. J. M., Bajo, J. L., Lanza, M. R. de V., & Rodrigo, M. A. R. (2022). Highly Efficient Electrochemical Production of Hydrogen Peroxide Using the GDE Technology. Industrial & Engineering Chemistry Research, 61, 10660−10669. doi:10.1021/acs.iecr.2c01669
    • NLM

      Cordeiro Junior PJM, Bajo JL, Lanza MR de V, Rodrigo MAR. Highly Efficient Electrochemical Production of Hydrogen Peroxide Using the GDE Technology [Internet]. Industrial & Engineering Chemistry Research. 2022 ; 61 10660−10669.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acs.iecr.2c01669
    • Vancouver

      Cordeiro Junior PJM, Bajo JL, Lanza MR de V, Rodrigo MAR. Highly Efficient Electrochemical Production of Hydrogen Peroxide Using the GDE Technology [Internet]. Industrial & Engineering Chemistry Research. 2022 ; 61 10660−10669.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acs.iecr.2c01669
  • Source: Industrial & engineering chemistry research. Unidade: EEL

    Subjects: ENERGIA, SEPARAÇÃO LÍQUIDO-LÍQUIDO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIASI, Lilian Caroline Kramer et al. Distillation Columns with Multiple Phase Divisions: How They Improve Thermodynamic Efficiency and Decrease Energy Consumption. Industrial & engineering chemistry research, v. 60, n. 43, p. 15690-15705, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.iecr.1c02548. Acesso em: 17 fev. 2026.
    • APA

      Biasi, L. C. K., Romano, A. L. R., Zemp, R. J., Heinkenschloss, M., Batista, F. R. M., & Meirelles, A. J. de A. (2021). Distillation Columns with Multiple Phase Divisions: How They Improve Thermodynamic Efficiency and Decrease Energy Consumption. Industrial & engineering chemistry research, 60( 43), 15690-15705. doi:10.1021/acs.iecr.1c02548
    • NLM

      Biasi LCK, Romano ALR, Zemp RJ, Heinkenschloss M, Batista FRM, Meirelles AJ de A. Distillation Columns with Multiple Phase Divisions: How They Improve Thermodynamic Efficiency and Decrease Energy Consumption [Internet]. Industrial & engineering chemistry research. 2021 ;60( 43): 15690-15705.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acs.iecr.1c02548
    • Vancouver

      Biasi LCK, Romano ALR, Zemp RJ, Heinkenschloss M, Batista FRM, Meirelles AJ de A. Distillation Columns with Multiple Phase Divisions: How They Improve Thermodynamic Efficiency and Decrease Energy Consumption [Internet]. Industrial & engineering chemistry research. 2021 ;60( 43): 15690-15705.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1021/acs.iecr.1c02548

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026