Filtros : "Reaction-diffusion equation" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES NÃO LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, v. 37, n. Ju 2025, p. 1917-1932, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10341-8. Acesso em: 03 jan. 2026.
    • APA

      Belluzi, M., Bortolan, M. C., Castro, U., & Fernandes, J. (2025). Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, 37( Ju 2025), 1917-1932. doi:10.1007/s10884-023-10341-8
    • NLM

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
    • Vancouver

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. An optimal control problem in a tubular thin domain with rough boundary. Journal of Differential Equations, v. 313, p. 188-243, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.12.021. Acesso em: 03 jan. 2026.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2022). An optimal control problem in a tubular thin domain with rough boundary. Journal of Differential Equations, 313, 188-243. doi:10.1016/j.jde.2021.12.021
    • NLM

      Nakasato JC, Pereira MC. An optimal control problem in a tubular thin domain with rough boundary [Internet]. Journal of Differential Equations. 2022 ; 313 188-243.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.jde.2021.12.021
    • Vancouver

      Nakasato JC, Pereira MC. An optimal control problem in a tubular thin domain with rough boundary [Internet]. Journal of Differential Equations. 2022 ; 313 188-243.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.jde.2021.12.021
  • Source: Zeitschrift für angewandte Mathematik und Physik. Unidades: IME, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, PROBLEMAS DE CONTORNO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PAZANIN, Igor e PEREIRA, Marcone Corrêa. Reaction-diffusion problem in a thin domain with oscillating boundary and varying order of thickness. Zeitschrift für angewandte Mathematik und Physik, v. 72, n. 1, p. 1-17, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00033-020-01436-z. Acesso em: 03 jan. 2026.
    • APA

      Nakasato, J. C., Pazanin, I., & Pereira, M. C. (2021). Reaction-diffusion problem in a thin domain with oscillating boundary and varying order of thickness. Zeitschrift für angewandte Mathematik und Physik, 72( 1), 1-17. doi:10.1007/s00033-020-01436-z
    • NLM

      Nakasato JC, Pazanin I, Pereira MC. Reaction-diffusion problem in a thin domain with oscillating boundary and varying order of thickness [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2021 ; 72( 1): 1-17.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1007/s00033-020-01436-z
    • Vancouver

      Nakasato JC, Pazanin I, Pereira MC. Reaction-diffusion problem in a thin domain with oscillating boundary and varying order of thickness [Internet]. Zeitschrift für angewandte Mathematik und Physik. 2021 ; 72( 1): 1-17.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1007/s00033-020-01436-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026