Filtros : "Piecewise smooth vector field" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Analysis: Hybrid Systems. Unidade: FFCLRP

    Subjects: VETORES, SISTEMAS DINÂMICOS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANTUNES, André Amaral e CARVALHO, Tiago de e GOMIDE, Otávio M. L. Closing Lemma for piecewise smooth vector fields with a recurrent point. Nonlinear Analysis: Hybrid Systems, v. 53, p. 1-9, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.nahs.2024.101495. Acesso em: 29 jan. 2026.
    • APA

      Antunes, A. A., Carvalho, T. de, & Gomide, O. M. L. (2024). Closing Lemma for piecewise smooth vector fields with a recurrent point. Nonlinear Analysis: Hybrid Systems, 53, 1-9. doi:10.1016/j.nahs.2024.101495
    • NLM

      Antunes AA, Carvalho T de, Gomide OML. Closing Lemma for piecewise smooth vector fields with a recurrent point [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 53 1-9.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.nahs.2024.101495
    • Vancouver

      Antunes AA, Carvalho T de, Gomide OML. Closing Lemma for piecewise smooth vector fields with a recurrent point [Internet]. Nonlinear Analysis: Hybrid Systems. 2024 ; 53 1-9.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.nahs.2024.101495
  • Source: Discrete and Continuous Dynamical Systems. Series B. Unidade: FFCLRP

    Subjects: MATEMÁTICA, VETORES, GEOMETRIA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando. A flow on S2 presenting the ball as its minimal set. Discrete and Continuous Dynamical Systems. Series B, v. 26, n. 8, p. 4263-4280, 2021Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020287. Acesso em: 29 jan. 2026.
    • APA

      Carvalho, T. de, & Gonçalves, L. F. (2021). A flow on S2 presenting the ball as its minimal set. Discrete and Continuous Dynamical Systems. Series B, 26( 8), 4263-4280. doi:10.3934/dcdsb.2020287
    • NLM

      Carvalho T de, Gonçalves LF. A flow on S2 presenting the ball as its minimal set [Internet]. Discrete and Continuous Dynamical Systems. Series B. 2021 ; 26( 8): 4263-4280.[citado 2026 jan. 29 ] Available from: https://doi.org/10.3934/dcdsb.2020287
    • Vancouver

      Carvalho T de, Gonçalves LF. A flow on S2 presenting the ball as its minimal set [Internet]. Discrete and Continuous Dynamical Systems. Series B. 2021 ; 26( 8): 4263-4280.[citado 2026 jan. 29 ] Available from: https://doi.org/10.3934/dcdsb.2020287
  • Source: Journal of Dynamical and Control Systems. Unidade: FFCLRP

    Subjects: VETORES, CAOS (SISTEMAS DINÂMICOS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de e GONÇALVES, Luiz Fernando. Combing the hairy ball using a vector field without equilibria. Journal of Dynamical and Control Systems, v. 26, n. 2, p. 233-242, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10883-019-09446-5. Acesso em: 29 jan. 2026.
    • APA

      Carvalho, T. de, & Gonçalves, L. F. (2020). Combing the hairy ball using a vector field without equilibria. Journal of Dynamical and Control Systems, 26( 2), 233-242. doi:10.1007/s10883-019-09446-5
    • NLM

      Carvalho T de, Gonçalves LF. Combing the hairy ball using a vector field without equilibria [Internet]. Journal of Dynamical and Control Systems. 2020 ; 26( 2): 233-242.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s10883-019-09446-5
    • Vancouver

      Carvalho T de, Gonçalves LF. Combing the hairy ball using a vector field without equilibria [Internet]. Journal of Dynamical and Control Systems. 2020 ; 26( 2): 233-242.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s10883-019-09446-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026