A data-driven systematic, consistent and non-exhaustive approach to Model Selection (2022)
Unidade: IMESubjects: SELEÇÃO DE MODELOS, ALGORITMOS
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MARCONDES, Diego. A data-driven systematic, consistent and non-exhaustive approach to Model Selection. 2022. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-09082022-154351/. Acesso em: 05 jan. 2026.APA
Marcondes, D. (2022). A data-driven systematic, consistent and non-exhaustive approach to Model Selection (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45132/tde-09082022-154351/NLM
Marcondes D. A data-driven systematic, consistent and non-exhaustive approach to Model Selection [Internet]. 2022 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-09082022-154351/Vancouver
Marcondes D. A data-driven systematic, consistent and non-exhaustive approach to Model Selection [Internet]. 2022 ;[citado 2026 jan. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-09082022-154351/
