Filtros : "Normal forms" Removido: "2004" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M. et al. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, v. 612, p. 188-205, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.10.040. Acesso em: 12 fev. 2026.
    • APA

      Bondarenko, V. M., Futorny, V., Petravchuk, A. P., & Sergeichuk, V. V. (2021). Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, 612, 188-205. doi:10.1016/j.laa.2020.10.040
    • NLM

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
    • Vancouver

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
  • Source: Journal de Mathématiques Pures et Appliquées. Unidade: ICMC

    Subjects: DEFORMAÇÕES DE SINGULARIDADES, TEORIA DAS CATÁSTROFES, TEORIA DAS SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOURLIOUROS, Konstantinos. Relative logarithmic cohomology and Nambu structures of maximal degree. Journal de Mathématiques Pures et Appliquées, v. 144, p. 250-268, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.matpur.2020.07.005. Acesso em: 12 fev. 2026.
    • APA

      Kourliouros, K. (2020). Relative logarithmic cohomology and Nambu structures of maximal degree. Journal de Mathématiques Pures et Appliquées, 144, 250-268. doi:10.1016/j.matpur.2020.07.005
    • NLM

      Kourliouros K. Relative logarithmic cohomology and Nambu structures of maximal degree [Internet]. Journal de Mathématiques Pures et Appliquées. 2020 ; 144 250-268.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.matpur.2020.07.005
    • Vancouver

      Kourliouros K. Relative logarithmic cohomology and Nambu structures of maximal degree [Internet]. Journal de Mathématiques Pures et Appliquées. 2020 ; 144 250-268.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1016/j.matpur.2020.07.005
  • Source: Geometriae Dedicata. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA DE GEODÉSICAS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REMIZOV, A. O e TARI, Farid. Singularities of the geodesic flow on surfaces with pseudo-Riemannian metrics. Geometriae Dedicata, v. 185, n. 1, p. 131-153, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10711-016-0172-2. Acesso em: 12 fev. 2026.
    • APA

      Remizov, A. O., & Tari, F. (2016). Singularities of the geodesic flow on surfaces with pseudo-Riemannian metrics. Geometriae Dedicata, 185( 1), 131-153. doi:10.1007/s10711-016-0172-2
    • NLM

      Remizov AO, Tari F. Singularities of the geodesic flow on surfaces with pseudo-Riemannian metrics [Internet]. Geometriae Dedicata. 2016 ; 185( 1): 131-153.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/s10711-016-0172-2
    • Vancouver

      Remizov AO, Tari F. Singularities of the geodesic flow on surfaces with pseudo-Riemannian metrics [Internet]. Geometriae Dedicata. 2016 ; 185( 1): 131-153.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/s10711-016-0172-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026