Filtros : "Nonlinear systems" Limpar

Filtros



Refine with date range


  • Source: Chaos: An Interdisciplinary Journal of Nonlinear Science. Unidade: IF

    Subjects: TEORIA DO CAOS, SISTEMAS NÃO LINEARES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Silvio Luiz Thomaz de et al. Quasiperiodic shrimp-shaped domains in intrinsically coupled oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science, v. 34, n. 12, 2024Tradução . . Disponível em: https://doi.org/10.1063/5.0234904. Acesso em: 03 jan. 2026.
    • APA

      Souza, S. L. T. de, Batista, A. M., Torricos, R. O. M., & Caldas, I. L. (2024). Quasiperiodic shrimp-shaped domains in intrinsically coupled oscillators. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34( 12). doi:10.1063/5.0234904
    • NLM

      Souza SLT de, Batista AM, Torricos ROM, Caldas IL. Quasiperiodic shrimp-shaped domains in intrinsically coupled oscillators [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2024 ; 34( 12):[citado 2026 jan. 03 ] Available from: https://doi.org/10.1063/5.0234904
    • Vancouver

      Souza SLT de, Batista AM, Torricos ROM, Caldas IL. Quasiperiodic shrimp-shaped domains in intrinsically coupled oscillators [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2024 ; 34( 12):[citado 2026 jan. 03 ] Available from: https://doi.org/10.1063/5.0234904
  • Source: Chaos: An Interdisciplinary Journal of Nonlinear Science. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, CAOS (SISTEMAS DINÂMICOS), SISTEMAS NÃO LINEARES, COVID-19, CORONAVIRUS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENDES, Carlos Fábio de Oliveira et al. Temporal relation between human mobility, climate, and COVID-19 disease. Chaos: An Interdisciplinary Journal of Nonlinear Science, v. 33, n. 5, 2023Tradução . . Disponível em: https://doi.org/10.1063/5.0138469. Acesso em: 03 jan. 2026.
    • APA

      Mendes, C. F. de O., Brugnago, E. L., Beims, M. W., & Grimm, A. M. (2023). Temporal relation between human mobility, climate, and COVID-19 disease. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33( 5). doi:10.1063/5.0138469
    • NLM

      Mendes CF de O, Brugnago EL, Beims MW, Grimm AM. Temporal relation between human mobility, climate, and COVID-19 disease [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2023 ; 33( 5):[citado 2026 jan. 03 ] Available from: https://doi.org/10.1063/5.0138469
    • Vancouver

      Mendes CF de O, Brugnago EL, Beims MW, Grimm AM. Temporal relation between human mobility, climate, and COVID-19 disease [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2023 ; 33( 5):[citado 2026 jan. 03 ] Available from: https://doi.org/10.1063/5.0138469
  • Source: Chaos: An Interdisciplinary Journal of Nonlinear Science. Unidade: IF

    Subjects: CAOS (SISTEMAS DINÂMICOS), SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA), SISTEMAS DISSIPATIVO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUGNAINE, Michele et al. Curry–Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, v. 31, n. 2, 2021Tradução . . Disponível em: https://doi.org/10.1063/5.0035303. Acesso em: 03 jan. 2026.
    • APA

      Mugnaine, M., Batista, A., Caldas, I. L., Szezech, J. D., Carvalho, R. E. de, & Viana, R. (2021). Curry–Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31( 2). doi:10.1063/5.0035303
    • NLM

      Mugnaine M, Batista A, Caldas IL, Szezech JD, Carvalho RE de, Viana R. Curry–Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2021 ; 31( 2):[citado 2026 jan. 03 ] Available from: https://doi.org/10.1063/5.0035303
    • Vancouver

      Mugnaine M, Batista A, Caldas IL, Szezech JD, Carvalho RE de, Viana R. Curry–Yorke route to shearless attractors and coexistence of attractors in dissipative nontwist systems [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2021 ; 31( 2):[citado 2026 jan. 03 ] Available from: https://doi.org/10.1063/5.0035303
  • Source: Chaos: An Interdisciplinary Journal of Nonlinear Science. Unidade: IF

    Subjects: CAOS (SISTEMAS DINÂMICOS), BIOFÍSICA, FÍSICA DE PLASMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Moises S. et al. Using rotation number to detect sticky orbits in Hamiltonian systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, v. 29, n. 4, 2019Tradução . . Disponível em: https://doi.org/10.1063/1.5078533. Acesso em: 03 jan. 2026.
    • APA

      Santos, M. S., Mugnaine, M., Szezech Jr., J. D., Batista, A. M., Caldas, I. L., & Viana, R. L. (2019). Using rotation number to detect sticky orbits in Hamiltonian systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29( 4). doi:10.1063/1.5078533
    • NLM

      Santos MS, Mugnaine M, Szezech Jr. JD, Batista AM, Caldas IL, Viana RL. Using rotation number to detect sticky orbits in Hamiltonian systems [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2019 ; 29( 4):[citado 2026 jan. 03 ] Available from: https://doi.org/10.1063/1.5078533
    • Vancouver

      Santos MS, Mugnaine M, Szezech Jr. JD, Batista AM, Caldas IL, Viana RL. Using rotation number to detect sticky orbits in Hamiltonian systems [Internet]. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2019 ; 29( 4):[citado 2026 jan. 03 ] Available from: https://doi.org/10.1063/1.5078533
  • Source: International Journal of Computer Mathematics. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIC, Natavsa e MARTÍNEZ, José Mário. Solution of bounded nonlinear systems of equations using homotopies with inexact restoration. International Journal of Computer Mathematics, v. 80, n. 2, p. 211-222, 2003Tradução . . Disponível em: https://doi.org/10.1080/00207160304672. Acesso em: 03 jan. 2026.
    • APA

      Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2003). Solution of bounded nonlinear systems of equations using homotopies with inexact restoration. International Journal of Computer Mathematics, 80( 2), 211-222. doi:10.1080/00207160304672
    • NLM

      Birgin EJG, Krejic N, Martínez JM. Solution of bounded nonlinear systems of equations using homotopies with inexact restoration [Internet]. International Journal of Computer Mathematics. 2003 ; 80( 2): 211-222.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1080/00207160304672
    • Vancouver

      Birgin EJG, Krejic N, Martínez JM. Solution of bounded nonlinear systems of equations using homotopies with inexact restoration [Internet]. International Journal of Computer Mathematics. 2003 ; 80( 2): 211-222.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1080/00207160304672

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026