Filtros : "Loops" Limpar

Filtros



Refine with date range


  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURAKAMI, Lúcia Satie Ikemoto e PERESI, Luiz Antonio e SHESTAKOV, Ivan P. A retrospect of the research in nonassociative algebras in IME-USP. São Paulo Journal of Mathematical Sciences, v. 16, n. 1, p. 84-130, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00248-x. Acesso em: 23 jan. 2026.
    • APA

      Murakami, L. S. I., Peresi, L. A., & Shestakov, I. P. (2022). A retrospect of the research in nonassociative algebras in IME-USP. São Paulo Journal of Mathematical Sciences, 16( 1), 84-130. doi:10.1007/s40863-021-00248-x
    • NLM

      Murakami LSI, Peresi LA, Shestakov IP. A retrospect of the research in nonassociative algebras in IME-USP [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 84-130.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s40863-021-00248-x
    • Vancouver

      Murakami LSI, Peresi LA, Shestakov IP. A retrospect of the research in nonassociative algebras in IME-USP [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 84-130.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1007/s40863-021-00248-x
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: LAÇOS, GRUPOS ALGÉBRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRABETTI, Alessandra e SHESTAKOV, Ivan P. Loop of formal diffeomorphisms and Faà di Bruno coloop bialgebra. Advances in Mathematics, v. 351, p. 495-569, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2019.04.053. Acesso em: 23 jan. 2026.
    • APA

      Frabetti, A., & Shestakov, I. P. (2019). Loop of formal diffeomorphisms and Faà di Bruno coloop bialgebra. Advances in Mathematics, 351, 495-569. doi:10.1016/j.aim.2019.04.053
    • NLM

      Frabetti A, Shestakov IP. Loop of formal diffeomorphisms and Faà di Bruno coloop bialgebra [Internet]. Advances in Mathematics. 2019 ; 351 495-569.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.aim.2019.04.053
    • Vancouver

      Frabetti A, Shestakov IP. Loop of formal diffeomorphisms and Faà di Bruno coloop bialgebra [Internet]. Advances in Mathematics. 2019 ; 351 495-569.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.aim.2019.04.053
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: LAÇOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e PEREZ-IZQUIERDO, José Maria. Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, v. 544, p. 460-501, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.01.028. Acesso em: 23 jan. 2026.
    • APA

      Grichkov, A., & Perez-Izquierdo, J. M. (2018). Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, 544, 460-501. doi:10.1016/j.laa.2018.01.028
    • NLM

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.laa.2018.01.028
    • Vancouver

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1016/j.laa.2018.01.028

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026