Filtros : "L1 estimates" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: FFCLRP

    Subjects: VETORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILIATTO, Victor Sandrin e PICON, Tiago Henrique. Sufficient conditions for local Lebesgue solvability of canceling and elliptic linear differential equations with measure data. Journal of Differential Equations, v. 430, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2025.02.050. Acesso em: 05 jan. 2026.
    • APA

      Biliatto, V. S., & Picon, T. H. (2025). Sufficient conditions for local Lebesgue solvability of canceling and elliptic linear differential equations with measure data. Journal of Differential Equations, 430, 1-25. doi:10.1016/j.jde.2025.02.050
    • NLM

      Biliatto VS, Picon TH. Sufficient conditions for local Lebesgue solvability of canceling and elliptic linear differential equations with measure data [Internet]. Journal of Differential Equations. 2025 ; 430 1-25.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jde.2025.02.050
    • Vancouver

      Biliatto VS, Picon TH. Sufficient conditions for local Lebesgue solvability of canceling and elliptic linear differential equations with measure data [Internet]. Journal of Differential Equations. 2025 ; 430 1-25.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jde.2025.02.050
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, OPERADORES ELÍTICOS, OPERADORES PSEUDODIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOUNIE, J. e PICON, Tiago Henrique. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators. Journal of Mathematical Analysis and Applications, v. 494, n. 1, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124598. Acesso em: 05 jan. 2026.
    • APA

      Hounie, J., & Picon, T. H. (2021). Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators. Journal of Mathematical Analysis and Applications, 494( 1). doi:10.1016/j.jmaa.2020.124598
    • NLM

      Hounie J, Picon TH. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( 1):[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124598
    • Vancouver

      Hounie J, Picon TH. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( 1):[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124598
  • Conference titles: Symposium in Harmonic Analysis and Geometric Measure Theory-SHAGMT. Unidade: FFCLRP

    Subjects: DESIGUALDADES, OPERADORES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOUNIE, J. e PICON, Tiago Henrique. Fractional Hardy-Sobolev inequalities for canceling elliptic differential operators. 2018, Anais.. Ribeirão Preto: DCM/FFCLRP/USP, 2018. Disponível em: https://arxiv.org/pdf/1809.08485.pdf. Acesso em: 05 jan. 2026.
    • APA

      Hounie, J., & Picon, T. H. (2018). Fractional Hardy-Sobolev inequalities for canceling elliptic differential operators. In . Ribeirão Preto: DCM/FFCLRP/USP. Recuperado de https://arxiv.org/pdf/1809.08485.pdf
    • NLM

      Hounie J, Picon TH. Fractional Hardy-Sobolev inequalities for canceling elliptic differential operators [Internet]. 2018 ;[citado 2026 jan. 05 ] Available from: https://arxiv.org/pdf/1809.08485.pdf
    • Vancouver

      Hounie J, Picon TH. Fractional Hardy-Sobolev inequalities for canceling elliptic differential operators [Internet]. 2018 ;[citado 2026 jan. 05 ] Available from: https://arxiv.org/pdf/1809.08485.pdf
  • Source: Journal of Functional Analysis. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, VETORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOONENS, Laurent e PICON, Tiago Henrique. Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields. Journal of Functional Analysis, v. 275, n. 5, p. 1073-1099, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jfa.2018.05.018. Acesso em: 05 jan. 2026.
    • APA

      Moonens, L., & Picon, T. H. (2018). Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields. Journal of Functional Analysis, 275( 5), 1073-1099. doi:10.1016/j.jfa.2018.05.018
    • NLM

      Moonens L, Picon TH. Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields [Internet]. Journal of Functional Analysis. 2018 ; 275( 5): 1073-1099.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jfa.2018.05.018
    • Vancouver

      Moonens L, Picon TH. Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields [Internet]. Journal of Functional Analysis. 2018 ; 275( 5): 1073-1099.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1016/j.jfa.2018.05.018
  • Source: Mathematische Nachrichten. Unidade: FFCLRP

    Assunto: ESPAÇOS DE SOBOLEV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOUNIE, Jorge e PICON, Tiago Henrique. L1 Sobolev estimates for (pseudo)-differential operators and applications. Mathematische Nachrichten, v. 289, n. 14-15, p. 1838-1854, 2016Tradução . . Disponível em: https://doi.org/10.1002/mana.201500017. Acesso em: 05 jan. 2026.
    • APA

      Hounie, J., & Picon, T. H. (2016). L1 Sobolev estimates for (pseudo)-differential operators and applications. Mathematische Nachrichten, 289( 14-15), 1838-1854. doi:10.1002/mana.201500017
    • NLM

      Hounie J, Picon TH. L1 Sobolev estimates for (pseudo)-differential operators and applications [Internet]. Mathematische Nachrichten. 2016 ; 289( 14-15): 1838-1854.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1002/mana.201500017
    • Vancouver

      Hounie J, Picon TH. L1 Sobolev estimates for (pseudo)-differential operators and applications [Internet]. Mathematische Nachrichten. 2016 ; 289( 14-15): 1838-1854.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1002/mana.201500017
  • Source: Annali di Matematica Pura ed Applicata. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, MATEMÁTICA, MATEMÁTICA APLICADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e KAPP, R. A. e PICON, Tiago Henrique. L1–Lp estimates for radial solutions of the wave equation and application. Annali di Matematica Pura ed Applicata, v. 195, n. 4, p. 1081-1091, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10231-015-0505-z. Acesso em: 05 jan. 2026.
    • APA

      Ebert, M. R., Kapp, R. A., & Picon, T. H. (2016). L1–Lp estimates for radial solutions of the wave equation and application. Annali di Matematica Pura ed Applicata, 195( 4), 1081-1091. doi:10.1007/s10231-015-0505-z
    • NLM

      Ebert MR, Kapp RA, Picon TH. L1–Lp estimates for radial solutions of the wave equation and application [Internet]. Annali di Matematica Pura ed Applicata. 2016 ; 195( 4): 1081-1091.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10231-015-0505-z
    • Vancouver

      Ebert MR, Kapp RA, Picon TH. L1–Lp estimates for radial solutions of the wave equation and application [Internet]. Annali di Matematica Pura ed Applicata. 2016 ; 195( 4): 1081-1091.[citado 2026 jan. 05 ] Available from: https://doi.org/10.1007/s10231-015-0505-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026