Filtros : "Hilbert polynomial" Limpar

Filtros



Refine with date range


  • Source: Algebras and Representation Theory. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de e JORGE PÉREZ, Victor Hugo e LIMA, Pedro Henrique Apoliano Albuquerque. On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, v. 26, n. 6, p. 2383-2397, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10468-022-10178-7. Acesso em: 25 jan. 2026.
    • APA

      Freitas, T. H. de, Jorge Pérez, V. H., & Lima, P. H. A. A. (2023). On Hilbert-Samuel coefficients of graded local cohomology modules. Algebras and Representation Theory, 26( 6), 2383-2397. doi:10.1007/s10468-022-10178-7
    • NLM

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
    • Vancouver

      Freitas TH de, Jorge Pérez VH, Lima PHAA. On Hilbert-Samuel coefficients of graded local cohomology modules [Internet]. Algebras and Representation Theory. 2023 ; 26( 6): 2383-2397.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1007/s10468-022-10178-7
  • Source: Communications in Algebra. Unidade: ICMC

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e FERRARI, Marcela Duarte. Coefficient modules and Ratliff-Rush closures. Communications in Algebra, v. 51, n. 8, p. 3497-3509, 2023Tradução . . Disponível em: https://doi.org/10.1080/00927872.2023.2185075. Acesso em: 25 jan. 2026.
    • APA

      Jorge Pérez, V. H., & Ferrari, M. D. (2023). Coefficient modules and Ratliff-Rush closures. Communications in Algebra, 51( 8), 3497-3509. doi:10.1080/00927872.2023.2185075
    • NLM

      Jorge Pérez VH, Ferrari MD. Coefficient modules and Ratliff-Rush closures [Internet]. Communications in Algebra. 2023 ; 51( 8): 3497-3509.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1080/00927872.2023.2185075
    • Vancouver

      Jorge Pérez VH, Ferrari MD. Coefficient modules and Ratliff-Rush closures [Internet]. Communications in Algebra. 2023 ; 51( 8): 3497-3509.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1080/00927872.2023.2185075
  • Source: International Journal of Algebra and Computation. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e FREITAS, Thiago Henrique de. Hilbert-Samuel multiplicity and Northcott's inequality relative to an Artinian module. International Journal of Algebra and Computation, v. 30, n. 2, p. 379-396, 2020Tradução . . Disponível em: https://doi.org/10.1142/S0218196720500034. Acesso em: 25 jan. 2026.
    • APA

      Jorge Pérez, V. H., & Freitas, T. H. de. (2020). Hilbert-Samuel multiplicity and Northcott's inequality relative to an Artinian module. International Journal of Algebra and Computation, 30( 2), 379-396. doi:10.1142/S0218196720500034
    • NLM

      Jorge Pérez VH, Freitas TH de. Hilbert-Samuel multiplicity and Northcott's inequality relative to an Artinian module [Internet]. International Journal of Algebra and Computation. 2020 ; 30( 2): 379-396.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1142/S0218196720500034
    • Vancouver

      Jorge Pérez VH, Freitas TH de. Hilbert-Samuel multiplicity and Northcott's inequality relative to an Artinian module [Internet]. International Journal of Algebra and Computation. 2020 ; 30( 2): 379-396.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1142/S0218196720500034

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026