Filtros : "Grassmann algebra" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA EXTERIOR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIDELES, Claudemir et al. A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings. Linear Algebra and its Applications, v. 680, p. 93-107, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.10.002. Acesso em: 29 jan. 2026.
    • APA

      Fideles, C., Gomes, A. B., Grichkov, A., & Guimarães, A. (2024). A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings. Linear Algebra and its Applications, 680, 93-107. doi:10.1016/j.laa.2023.10.002
    • NLM

      Fideles C, Gomes AB, Grichkov A, Guimarães A. A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings [Internet]. Linear Algebra and its Applications. 2024 ; 680 93-107.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.laa.2023.10.002
    • Vancouver

      Fideles C, Gomes AB, Grichkov A, Guimarães A. A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings [Internet]. Linear Algebra and its Applications. 2024 ; 680 93-107.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.laa.2023.10.002
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, COMBINATÓRIA, REPRESENTAÇÃO DE GRUPOS SIMÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBRUNO, Antonio e POLCINO MILIES, Francisco César e ZAICEV, Mikhail V. A characterization of fundamental algebras through 'S IND.n'-characters. Journal of Algebra, v. 541, p. 51-60, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2019.09.005. Acesso em: 29 jan. 2026.
    • APA

      Giambruno, A., Polcino Milies, F. C., & Zaicev, M. V. (2020). A characterization of fundamental algebras through 'S IND.n'-characters. Journal of Algebra, 541, 51-60. doi:10.1016/j.jalgebra.2019.09.005
    • NLM

      Giambruno A, Polcino Milies FC, Zaicev MV. A characterization of fundamental algebras through 'S IND.n'-characters [Internet]. Journal of Algebra. 2020 ; 541 51-60.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.09.005
    • Vancouver

      Giambruno A, Polcino Milies FC, Zaicev MV. A characterization of fundamental algebras through 'S IND.n'-characters [Internet]. Journal of Algebra. 2020 ; 541 51-60.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.09.005
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE JORDAN, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KUZ'MINA, Alexey e SHESTAKOV, Ivan P. Basic superranks for varieties of algebras. Journal of Algebra, v. 478 p. 58-91 2017, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.01.018. Acesso em: 29 jan. 2026.
    • APA

      Kuz'mina, A., & Shestakov, I. P. (2017). Basic superranks for varieties of algebras. Journal of Algebra, 478 p. 58-91 2017. doi:10.1016/j.jalgebra.2017.01.018
    • NLM

      Kuz'mina A, Shestakov IP. Basic superranks for varieties of algebras [Internet]. Journal of Algebra. 2017 ; 478 p. 58-91 2017[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.01.018
    • Vancouver

      Kuz'mina A, Shestakov IP. Basic superranks for varieties of algebras [Internet]. Journal of Algebra. 2017 ; 478 p. 58-91 2017[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.01.018

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026