Filtros : "Global existence" Limpar

Filtros



Refine with date range


  • Source: Nonlinear Differential Equations and Applications No DEA. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DE EVOLUÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge e NASCIMENTO, Wanderley Nunes do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. Nonlinear Differential Equations and Applications No DEA, v. 31, n. 23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00030-023-00909-0. Acesso em: 29 jan. 2026.
    • APA

      Ebert, M. R., Marques, J., & Nascimento, W. N. do. (2024). The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping. Nonlinear Differential Equations and Applications No DEA, 31( 23). doi:10.1007/s00030-023-00909-0
    • NLM

      Ebert MR, Marques J, Nascimento WN do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping [Internet]. Nonlinear Differential Equations and Applications No DEA. 2024 ; 31( 23):[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s00030-023-00909-0
    • Vancouver

      Ebert MR, Marques J, Nascimento WN do. The move from Fujita type exponent to a shift of it for a class of semilinear evolution equations with time-dependent damping [Internet]. Nonlinear Differential Equations and Applications No DEA. 2024 ; 31( 23):[citado 2026 jan. 29 ] Available from: https://doi.org/10.1007/s00030-023-00909-0
  • Source: Nonlinear Analysis: Real World Applications. Unidade: FFCLRP

    Subjects: PROBLEMA DE CAUCHY, MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation. Nonlinear Analysis: Real World Applications, v. 71, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2023.103835. Acesso em: 29 jan. 2026.
    • APA

      Ebert, M. R., & Reissig, M. (2023). A note to semilinear de Sitter models in 1d with balanced mass and dissipation. Nonlinear Analysis: Real World Applications, 71. doi:10.1016/j.nonrwa.2023.103835
    • NLM

      Ebert MR, Reissig M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation [Internet]. Nonlinear Analysis: Real World Applications. 2023 ; 71[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.nonrwa.2023.103835
    • Vancouver

      Ebert MR, Reissig M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation [Internet]. Nonlinear Analysis: Real World Applications. 2023 ; 71[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.nonrwa.2023.103835
  • Source: Mathematical Methods in the Applied Sciences. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DA ONDA, TORNADOS, ESPAÇOS MÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e MARQUES, Jorge. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, v. 46, p. 2602-2635, 2023Tradução . . Disponível em: https://doi.org/10.1002/mma.8663. Acesso em: 29 jan. 2026.
    • APA

      Ebert, M. R., & Marques, J. (2023). Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime. Mathematical Methods in the Applied Sciences, 46, 2602-2635. doi:10.1002/mma.8663
    • NLM

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1002/mma.8663
    • Vancouver

      Ebert MR, Marques J. Critical exponent of Fujita type for semilinear wave equations in Friedmann–Lemaître–Robertson–Walker spacetime [Internet]. Mathematical Methods in the Applied Sciences. 2023 ; 46 2602-2635.[citado 2026 jan. 29 ] Available from: https://doi.org/10.1002/mma.8663
  • Source: Nonlinear Analysis. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, PROBLEMA DE CAUCHY, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D’ABBICCO, M. e EBERT, Marcelo Rempel. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping. Nonlinear Analysis, v. 215, p. [26] , 2022Tradução . . Disponível em: https://doi.org/10.1016/j.na.2021.112637. Acesso em: 29 jan. 2026.
    • APA

      D’Abbicco, M., & Ebert, M. R. (2022). The critical exponent for semilinear σ-evolution equations with a strong non-effective damping. Nonlinear Analysis, 215, [26] . doi:10.1016/j.na.2021.112637
    • NLM

      D’Abbicco M, Ebert MR. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping [Internet]. Nonlinear Analysis. 2022 ; 215 [26] .[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.na.2021.112637
    • Vancouver

      D’Abbicco M, Ebert MR. The critical exponent for semilinear σ-evolution equations with a strong non-effective damping [Internet]. Nonlinear Analysis. 2022 ; 215 [26] .[citado 2026 jan. 29 ] Available from: https://doi.org/10.1016/j.na.2021.112637
  • Source: Trends in Mathematics. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, Marcello e EBERT, Marcelo Rempel e PICON, Tiago Henrique. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, p. 465-471, 2017Tradução . . Acesso em: 29 jan. 2026.
    • APA

      D'Abbicco, M., Ebert, M. R., & Picon, T. H. (2017). Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics, 465-471.
    • NLM

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2026 jan. 29 ]
    • Vancouver

      D'Abbicco M, Ebert MR, Picon TH. Global existence of small data solutions to the semilinear fractional wave equation. Trends in Mathematics. 2017 ; 465-471.[citado 2026 jan. 29 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026