Filtros : "Fiber bundle" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Subjects: TEOREMA DO PONTO FIXO, FEIXES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e LAASS, Vinicius Casteluber e SILVA, Weslem Liberato. The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles. Topology and its Applications, v. 359, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2024.109081. Acesso em: 21 jan. 2026.
    • APA

      Gonçalves, D. L., Laass, V. C., & Silva, W. L. (2025). The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles. Topology and its Applications, 359, 1-25. doi:10.1016/j.topol.2024.109081
    • NLM

      Gonçalves DL, Laass VC, Silva WL. The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles [Internet]. Topology and its Applications. 2025 ; 359 1-25.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.topol.2024.109081
    • Vancouver

      Gonçalves DL, Laass VC, Silva WL. The Borsuk-Ulam property for homotopy classes on bundles, parametrized braids groups and applications for surfaces bundles [Internet]. Topology and its Applications. 2025 ; 359 1-25.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.topol.2024.109081
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TEOREMA DO PONTO FIXO, TOPOLOGIA ALGÉBRICA, FEIXES, HOMOTOPIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. On minimal fixed points set of fiber preserving maps of S1-bundles over S1. Topology and its Applications, v. 359, n. artigo 109083, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2024.109083. Acesso em: 21 jan. 2026.
    • APA

      Gonçalves, D. L., Libardi, A. K. M., Vendrúscolo, D., & Vieira, J. P. (2025). On minimal fixed points set of fiber preserving maps of S1-bundles over S1. Topology and its Applications, 359( artigo 109083), 1-13. doi:10.1016/j.topol.2024.109083
    • NLM

      Gonçalves DL, Libardi AKM, Vendrúscolo D, Vieira JP. On minimal fixed points set of fiber preserving maps of S1-bundles over S1 [Internet]. Topology and its Applications. 2025 ; 359( artigo 109083): 1-13.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.topol.2024.109083
    • Vancouver

      Gonçalves DL, Libardi AKM, Vendrúscolo D, Vieira JP. On minimal fixed points set of fiber preserving maps of S1-bundles over S1 [Internet]. Topology and its Applications. 2025 ; 359( artigo 109083): 1-13.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.topol.2024.109083
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e PENTEADO, D. e VIEIRA, J. P. Coincidence points of fiber maps on Sn-bundles. Topology and its Applications, v. 157, n. 10-11, p. 1760-1769, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2010.02.025. Acesso em: 21 jan. 2026.
    • APA

      Gonçalves, D. L., Penteado, D., & Vieira, J. P. (2010). Coincidence points of fiber maps on Sn-bundles. Topology and its Applications, 157( 10-11), 1760-1769. doi:10.1016/j.topol.2010.02.025
    • NLM

      Gonçalves DL, Penteado D, Vieira JP. Coincidence points of fiber maps on Sn-bundles [Internet]. Topology and its Applications. 2010 ; 157( 10-11): 1760-1769.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.topol.2010.02.025
    • Vancouver

      Gonçalves DL, Penteado D, Vieira JP. Coincidence points of fiber maps on Sn-bundles [Internet]. Topology and its Applications. 2010 ; 157( 10-11): 1760-1769.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/j.topol.2010.02.025

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2026